Submersible Pump Troubleshooting

Presented By: Tony Lococo

Baker & Associates

Baker &

Baker &

- Pump is on site and running
- Pump is on site, not running
- Pump is in shop, assembled
- Pump is in shop, disassembled

Baker &

. .

Pump In the Wetwell, Not Running

Baker &

Pump In the Wetwell, Not Running

Baker &

A . .

Pump In the Wetwell, Not Running

Junction Box

Asrthtemenpleitopeinced
væltageetions tight?
tripped/functioning?

Baker &

A • •

Pump is On Site, Not Running

- Check to ensure the impeller spins freely.
- Inspect for clogging

Baker &

A . .

Baker &

A + - -

- Is the level going down?
- Is there any abnormal noise?
 - Can you "pin point" the source?
- Is there excessive vibration?
 - Perception or instrumentation
- Is the check valve opening?

Baker &

A . .

 Is pump properly seated on the discharge?

Baker &

A • •

Instrumentation Checks

• What is the head pressure?

Baker &

. .

Instrumentation Checks

• Is there a flow meter available?

Baker &

Instrumentation Checks

- What is the current draw?
- Measure the pump monitoring sensors.

Baker &

A • •

Baker &

A • •

Inspect Lifting Chain

Baker &

 Visually inspect pump cables for tears or cuts

Baker &

- Inspect for signs of wear
- Check wear ring tolerances.

Baker &

A • •

Periodic spot check can be used for preventive maintenance, but must be adjusted for temperature and humidity.

Baker &

A • •

• Check for proper wiring of the terminal board.

Baker &

A . .

• Evaluate the seal oil.

Baker &

- Check for restricted movement of rotating parts.
- Check for loose hardware.

Baker &

A • •

- Check mechanical seal installation.
- Check mechanical seal condition.

Baker &

A . .

Baker &

A • •

- Check for wear, rubbing, or discoloration of pump components.
 - Housings
 - Shafts
 - Rotor
 - Impeller
 - Seals

Baker &

Overheated Motor

Baker &

• Rotor Damage

Baker &

- Inspect the Wet End
- Impeller Wear Ring
- Casing Wear Ring
- Impeller Damage/Wear
- Cavitation

Baker &

• Seal Failure

Baker &

- Can you see evidence of corrosion?
- Are there any parts missing?
- Are there any signs of misuse?
- Inspect the O-rings

Baker &

- Bearings
- Lack of Lubrication
- Signs of Wear

Baker &

Baker &

A . . .

Failure Determination

- Electrical
- Mechanical
- Seal

A . . .

Electrical Failure

- Most Common by Insulation Breakdown
- Insulation in the Motor Fails
- Windings Short
 - To Ground
 - To Adjacent Winding

Electrical Failure

- The motor insulation is broken down by heat.
- In the long term this is normal wear and tear.
- In the short term this is a failure.
- Excessive heat can be caused by:
 - Overloading
 - Under voltage -10% of rated voltage
 - Voltage unbalance -1%
 - Cooling system failure
 - Starting pump too frequently

• Overload / Under voltage

Baker &

A . . .

Electrical Failure

• Single Phasing

Baker &

Unbalanced Voltage

Baker &

A . .

Electrical Failure

Voltage Surge

Baker &

A . .

· · ·

Electrical Failure

- Grounded Windings
- Typically caused by vibration or voltage surge

Shorted Phase to Phase

Baker &

A . .

Baker &

There will be evidence of this contact

- rubbing
- wear
- discoloration
- damage to one or both of the components.

Baker &

A • •

Corrosion

Baker &

• Impeller Wear

Baker &

Bearing Failure

- rubbing
- wear
- inadequate lubrication
- excessive runtime

Seal Failure

- Seal Worn
- Seal Failed

Baker &

• New & Worn Seal

Baker &

Seal Failure can be separated in two broad categories:

- Components damaged
 - By Heat
 - Clogging/Abrasives
 - Corrosion
- Seal faces separate

Baker &

A . .

Basic Mechanical Seal Components

Most mechanical seals are constructed of three materials: Metal or plastic parts, A face combination, Rubber o-rings

Baker &

A . . .

What to Look For:

- Evidence of rubbing
- Evidence of corrosion
- Discoloration of one of the seal component materials
- Sticking or coating on the face causing face separation.

Baker &

A . .

Oil Housing

Baker &

. .

Oil Housing Contamination

Baker &

A . .

Rubbing

Baker &

Discoloration

Baker &

Heat Marking

Baker &

Corrosion

Baker &

56

Mechanical Failure

Seal Face Separation:

- The seal is not free to slide or move on the shaft
- The spring becomes packed with material

Seal Face Separation

- The seal face is being distorted by either temperature or pressure.
- Vibration
- Pump is operating outside of the allowable limits of the pump curve.

Baker &

- Pumps Fail
- Mechanical failures leave evidence:
 - Wear marks, broken pieces or impact damage
- Electrical failures also leave evidence:
 - Burnt stators, Tripped breakers
- Seal failures leave evidence also:
 - Washed out bearings and media in pumps
 - Wear marks, broken pieces, burnt stators, tripped breakers,

Submersible Pump Troubleshooting

Baker &

A • •