

Orthophosphate Monitoring and Phosphorus Removal Control

OWEA 2018 PLANT OPERATIONS AND LAB WORKSHOP

Today's Topics

Process monitoring of phosphorus

- Chemistry
- Removal mechanism
- Analyzers
- Treatment
- Case studies

Chemical and biological removal of phosphorus from wastewater

Phosphorus Chemistry

PO₄³⁻ (+5) most common occurrence in environment

1 of 5 main elements of living organisms (CHONP)

Major component of fertilizers

Limiting nutrient in fresh water

Phosphorus Forms in WW*

Most WRRFs Are Not Designed to Remove 'P'

How is 'P' Removed?

- 1. Biological
- 2. Chemical

Basic concept:

'P' dissolved ------ 'P' Particulate

Most WRRFs Are Not Designed to Remove 'P'

Some 'P' removal occurs normally

Particulate Forms of P in Treated WW

Surface Complexation

SEM image of 1-minute old (${\rm FeOH_3}$) floc, Dr. Vladimir Kitaev, Wilfred Laurier University

HMO floc w/ adsorbed P

Enhanced Biological P Removal (EBPR)

Polyphosphate granules in bacteria

Phosphorus Monitoring Applications

Phosphorus Analyzers

Colorimetric Measurement of P

- Measures ortho-P
- Sample processing required for sNRP or TP
- Yellow method
 - Detection limit = 0.05 mg P/L
 - Used in most online analyzers
- Blue method used in lab for compliance monitoring

Desirable Features of Online Analyzer

Easy to use

Minimal maintenance

Transparency

LOW, low reagent consumption

Orthophosphate Cabinet Analyzers

Wet chemistry
4 main components

- **Electronics**
- Photometer & tubing
- Sample transport
- Reagent & solutions
- Filter (not shown)

Analyzer Mounting

Sampling Filtering & Transport

P Removal Treatment

Chemical P Removal – Surface Complexation Model (SCM)

- 1. Reaction with alkalinity to form hydrous metal oxide (HMO) floc
- 2. Soluble P adsorbs to HMO reactive sites
- 3. Co-precipitation: HMO enmeshes colloidal & Particulate P

SCM vs. Equilibrium

Low energy mixing limits P removal

Much lower dosages are possible

Chemical Removal - Simultaneous Precipitation

Floating Point Control

Chemical Dosing System Operation

Analog Signal Directly to Feed Pump

Wisconsin WRRF Chemical Usage

Chemical usage easy to track

Simple payback is 1 year or less

Other benefits like less sludge production not quantified

Enhanced Biological Phosphorus Removal

EBPR Monitoring Opportunities

COD / BOD

DO

Nitrate

ORP

TSS

Sludge blanket depth

P Removal with Effluent TSS

ORP Control of EBPR

ORP high / air "off": ~250 mV

- Anaerobic to Oxic
- DO SP: 1.7 to 1.9 mg/L
- Nitrification
- P uptake

ORP low / timer start: ~50 mV

- Oxic to Anoxic
- Denitrification
- Timer start

Anaerobic Timer: 40 min.

- Anaerobic
- P release
- Air "on"

2009 – 1 mg/L TP Limit with EBPR

Smith, R.C., Goble, L, "To Everything There is a Season: Lessons from Four Seasons of Phosphorus Removal at Greene County Sugarcreek WRRF", WEFTEC 2010

Effect of P Removal on WRRF Operations

	Chemical Removal	EBPR
Nitrogen removal	U	U
Energy usage		0
Supplemental carbon requirements		U
Dewatering	0	
Biogas production	0	U
Sludge production	U	
Operating cost		0
Operating Complexity		U

- Strong positive impact
- O Positive
- O Negative
- Strong negative impact

Side-stream Enhanced Biological Phosphorus Removal

Summary

Phosphorus in wastewater occurs as PO₄³⁻ and is either dissolved or particulate

Chemical and biological P processes convert soluble P to particulate P which can be removed from ww by sedimentation

It is important to consider the impact of P removal on WRRF operations when selecting between chemical and biological P removal

Monitoring of dissolved P, which is mostly orthophosphate, is useful for process control of P removal processes

Minimizing chemical usage

Status of release/uptake (EBPR)

Oxidation-Reduction Potential (ORP) can be used to optimize the conditions for EBPR

Questions? Comments? Clarifications?

www.YSI.com

E-mail

robert.smith@xyleminc.com tmulcahy@mulcahyshaw.com mduerr@mulcahyshaw.com

Twitter

@YSlinc

@DrRobYSI

YouTube

https://www.youtube.com/user/YSlinc

