

Instrumentation Based Real-Time Process Optimization

November 13, 2018

Dave Rutowski
Claros Process Optimization

INSTRUMENTATION CONTINUUM

Active (control) Passive (watch) **Decision** Data: Control/ **Support:** Control/ Do Grab **Online Aggregate Optimize** Detect **Optimize Nothing Analyze Samples Analysis Processes Facilities** Diagnose Report **Predict SERVICE** Lab Prognosys/ **Process RTC** Claros **WIMS Equipment/** Sensor **Equipment Chemistries** Verification **PROGNOSYS** READY

LOTS OF VARIATIONS IN PROCESS CONTROL

Operator Questions -

- What to measure and why?
- Where to measure it?
- Is a daily grab sample representative, good enough?
 - Hint: It is not
- Is my plant running as designed?
- Is my instrument giving me correct readings?
- What do I do with the data?
- Do the chemical, power savings matter?
 - Hint: Absolutely

UTILITY MARKET'S BUSINESS ISSUES

- Retiring workforce Institutional knowledge is leaving the industry
- Grab sample process changes lead to chasing problems & never catching them
- Budget concerns
- Compliance regulations
- Data management

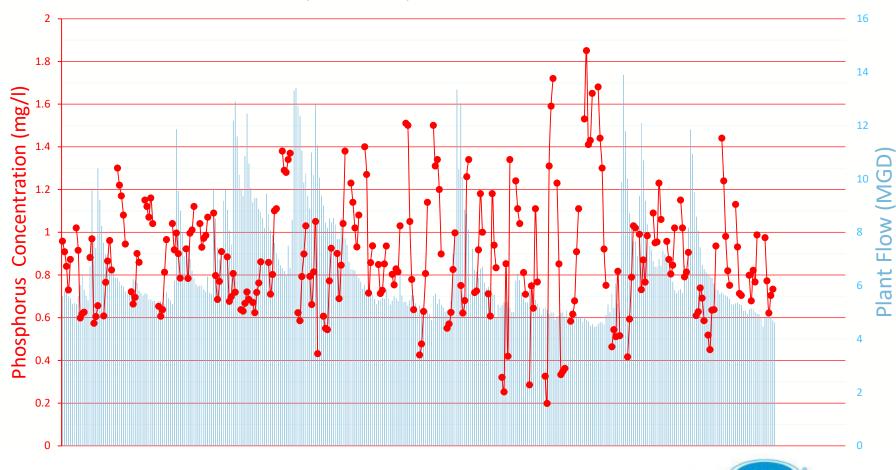
Claros Overview

Instrument Management

Data Management

Process Management

Everyone is being asked to do more with less but how?


RTC - REAL TIME CONTROL.

ILLINOIS (CURRENT STATE)

Daily Flow / Phosphorus Concentration 2017

ILLINOIS PHOSPHORUS LEVELS

Based on 2017 Data

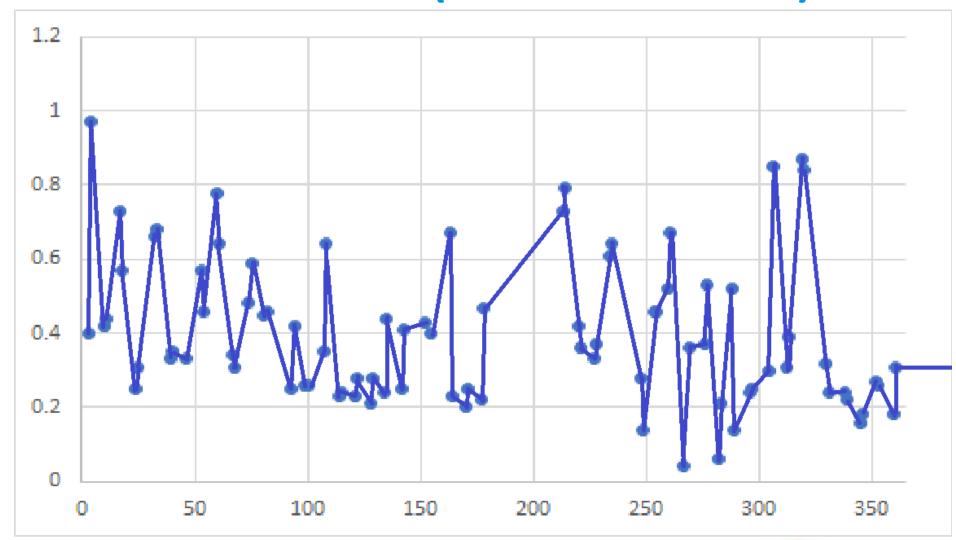
146 days Spent overfeeding Alum

Cost:

22,552 gallons excess used (Actual vs. Target of 0.95 mg/l)

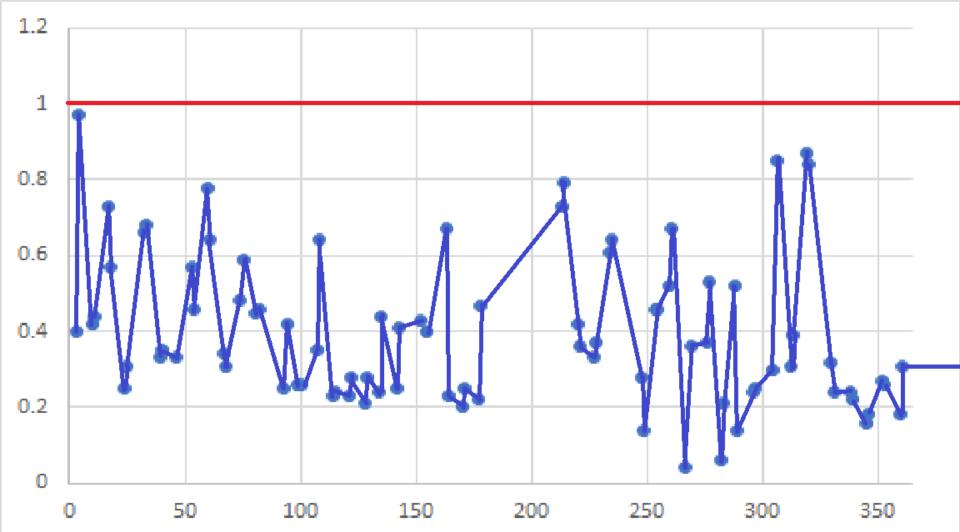
= 5 truckloads of Alum

\$27,062

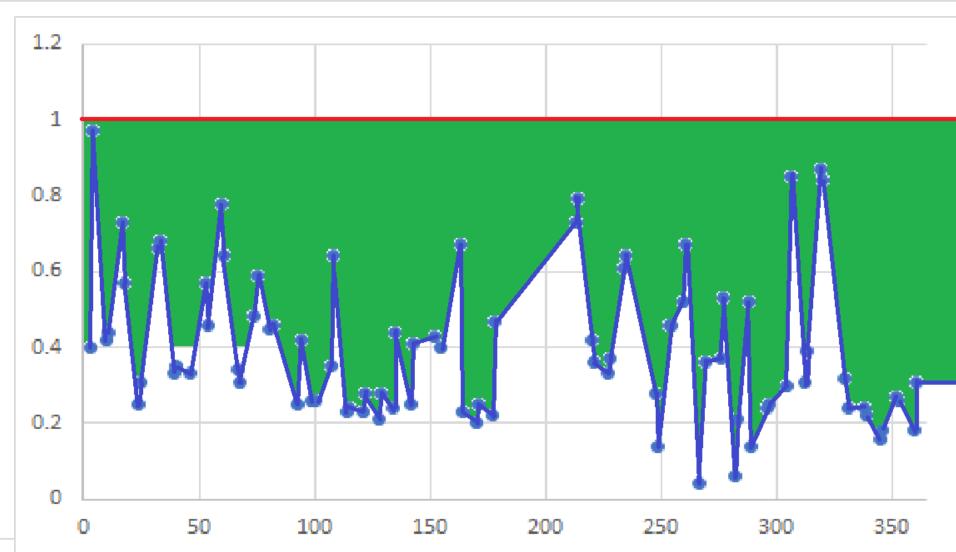

ILLINOIS PHOSPHORUS LEVELS DAILY COMPOSITE TESTING

Over 2.000	1	0.9-0.999	37	0.8-0.899	37
1.5-1.999	9			0.7-0.799	41
1.40-1.499	5			0.6-0.699	39
1.30-1.399	11			0.5-0.599	14
1.2-1.299	11			0.4-0.499	7
1.1-1.199	16			0.3-0.399	5
1.0-1.099	24			<u>Under 0.300</u>	3
	76		37		146

NOT MONITORED 106



OHIO WWTP (CURRENT STATE)



OHIO WWTP (CURRENT STATE)

OHIO WWTP (CURRENT STATE)

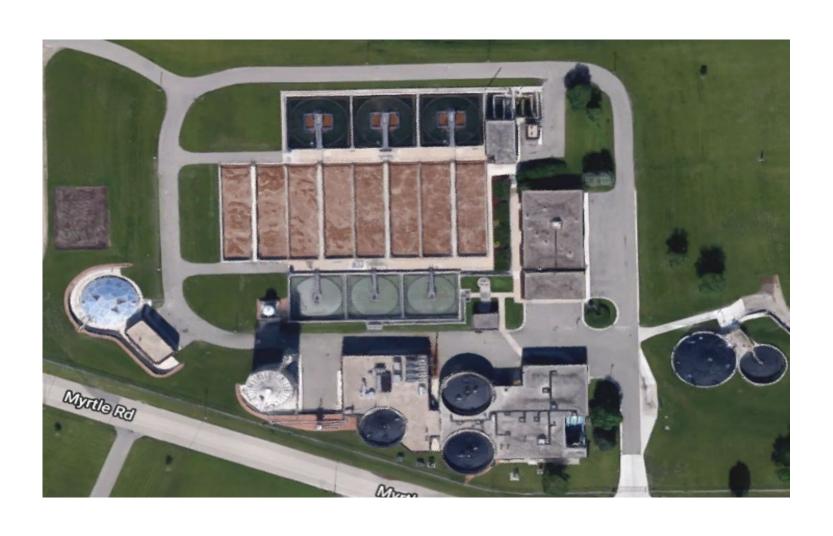
OHIO WWTP PHOSPHORUS LEVELS

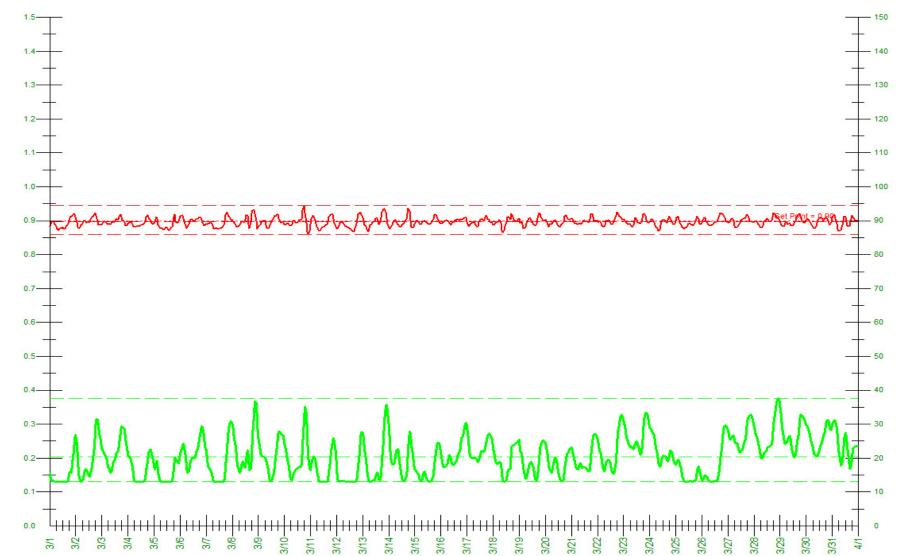
Based on 2017 Data:

Phosphorus Discharge permit limit = 1.0 mg/l

Average discharge = 0.40 mg/l

(87 days sampled in 2017)


Alum Overfeeding cost


(based on 0.95 mg/l target)

\$78,999.60

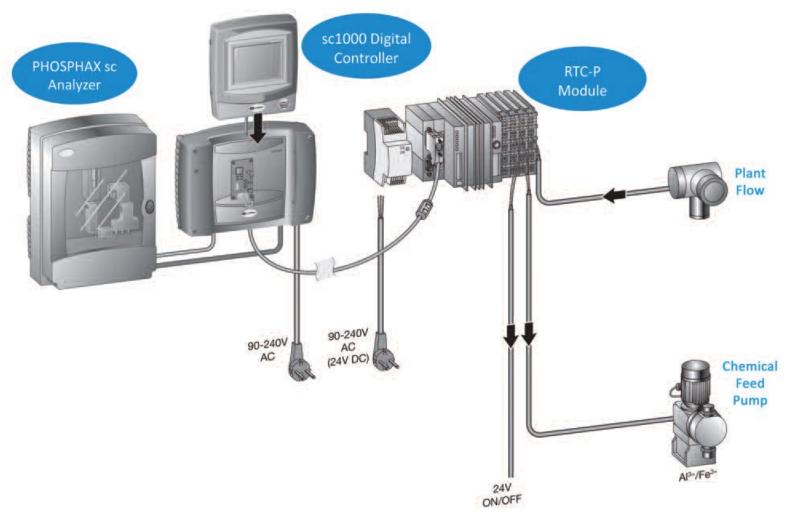
Beaver Dam, WI 5.6 MGD (Design) Activated Sludge Plant City of 16,000 residents

Beaver Dam, WI

"If we were high one week, we overfed ferric to make sure the average for the month was below our 1.0 mg/L total phosphorus limit."

The average dose was 300 gpd at 12.5 gph.

Now during months of higher loading, the ferric feed rate may increase from **3 gph to 10 gph**.


"Estimated annual savings of \$50,000 to \$70,000 have more than paid for the system."

Besides affordability, a major benefit was **peace of mind**. Previously, staff worried about whether the plant was over or at its limit for the month. "Now, the RTC controls the dose and I know we will be within our limit,"

"it has worked flawlessly."

Rob Minnema, Director or Utilities Beaver Dam, WI

RTC1017P MODULE REAL TIME PHOSPHORUS CONTROL SOLUTION

RTC-P

PHOSPHAX sc + Filtrax

Components

sc1000

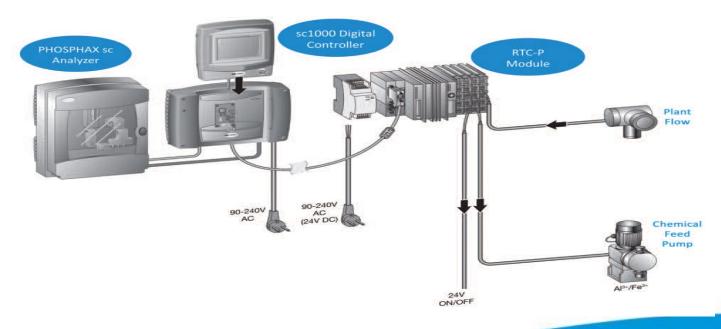
- Controls RTC parameters
- Signal validation
- All communication capabilities

RTC

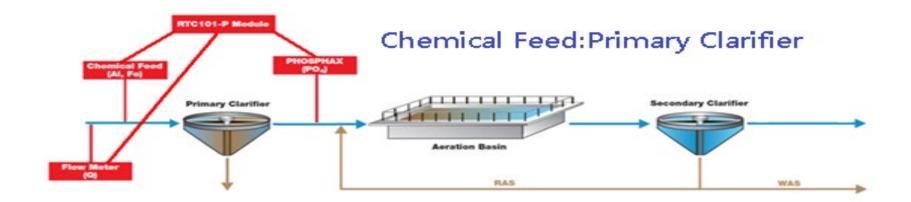
- Calculates setpoints in real time
- Interface for dosing pump
- Install in PLC cabinet

Plant Flow

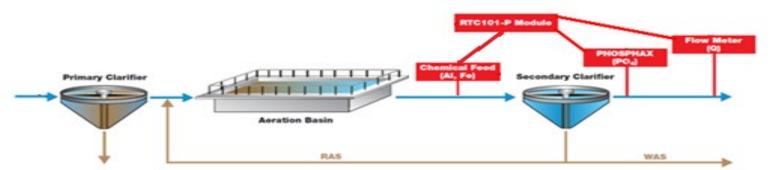
Needed to determine loading


Dosing Pump

 Control pump feed of precipitant based on PO₄ concentration


WHY HACH'S RTC FOR PHOSPHORUS CONTROL?

- Treatment Process is Optimized
 - Phosphorus load (Flow x Conc.) vs. Chemical effectiveness
- ROI is proven, can be switched between precipitants
- Cost savings can be redirected
- Compliance worries are gone
- Hach offers packaged integration!



PO4-P PRECIPITANT CONTROL MODULE

Chemical Feed: Secondary

PHOSPHORUS ANALYZER- COLORMETRIC

- Sample Ranges
 - 0.0 2.0 mg/L PO4-P
 - 0.05 15.00 mg/L PO4-P
 - 1.0 50.00 mg/L PO4-P

Phosphax

- 5 120 minute measurement interval
 - Faster the interval...faster use of reagents

SAMPLE CONDITIONING

FILTRATION MODULES

- The Filtration Module prepares sample through two ultrafiltration membranes (0.15 μ)
- Modules are immersed in the process tank.
- Peristaltic pump pulls the sample through one filter at a time, allowing for optimal cleaning.
- Unit automatically cleans by forcing vigorous stream of air bubbles against sides of the filter modules.

CONTROLLERS/TRANSMITTERS

sc1000

Standard Features

- Highly configurable
- Up To 8 Sensors
- Plug And Play Functionality
- C1D2 Certification
- NEMA 4x/lp66
- 4 Relays
- Up To 12 Ma Outputs
- Up To 12 Ma Inputs
- SD Card For Data log And Configuration
- Networking
- Allows Up To 32 Devices Per Network

Communication Options

- Modbus Rs232/Rs485
- Modbus TCP/IP
- Profibus Dp
- Hart 7.2

PHOSPHORUS DOSING CONTROL DESIGN QUESTIONS

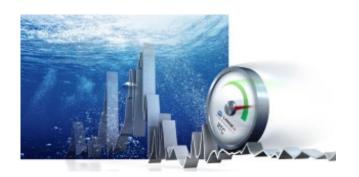
- Model based or feedback?
- Control or modelling/trending?
- How much Chemical is required to remove the Phosphorus?
- Control the pumps directly, or have a separate SCADA control loop?
- What if something else is limiting reaction?
- How to integrate sensor diagnostics into the controls?
- Who will train everyone on the system?
- How long will it take to write and test the logic?
- What if a sensor fails?
- How to store the data?
- Who will write the O&M Manual?
- Who will fix it if it breaks?

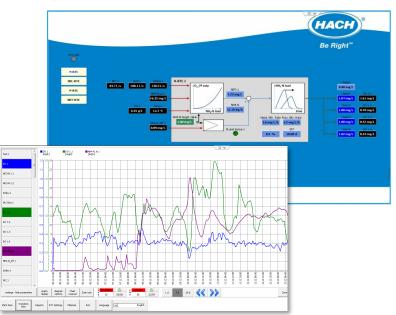
PHOSPHORUS DOSING CONTROL SOLUTIONS

Hach RTC-P Module					
1. What to measure & where	√ Done				
2. Can both model and/or control	√ Done				
3. Definition of control algorithms	√ Done				
4. Programming of control algorithms	√ Done				
5. Implementation on hardware	√ Done				
6. Testing of software and hardware	√ Done				
7. User interface	√ Done				
8. User manual	√ Done				
9. Backup stages	√ Done				
10. Communications interface	√ Done				
11. Data stored on IPC	√ Done				
12. Onsite & remote support	√ Done				
13. Setting of the plant-specific parameters	During commissioning				

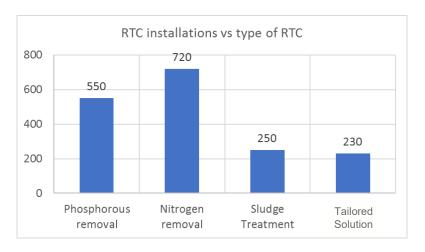
CLAROS PROCESS MANAGEMENT

Standardized RTC control modules


- Adapt asset plant operation to varying load situations and plant performance
 - Improved compliance (minimize risk)
 - Reduced OPEX / Short ROI (economically viable)
 - Improved process transparency



High reliability, high uptime



Large number of installations

- <u>1850 sites</u> in EU, US, China operating an RTC
 - 70 % of plants between 2-8 MGD
- <u>3150 control modules</u> in operation
- Growing number of industrial RTC

Experienced Global RTC Team

- Growing team of RTC consultants
 - 28 in EU, 5 in US
- Sales & Service NA: 250 associates
- Centralized (US and EU) RTC Service/Commissioning experts providing remote support & monitoring

PROCESS MANAGEMENT RTC MODULES

Standardized modules for

- Nitrification / Denitrification
 - 10 20% aeration energy savings above conventional NH3 trim optimization
 - Improved alkalinity
 - Reduced denitrification in Secondary Clarifiers
- Chemical phosphorous removal
 - Savings on precipitant (10 50%) and sludge disposal
 - Process stability by reducing loss in alkalinity
- Sludge treatment
 - Savings on polymer (15 20%)
 - Increased gas yield (5 10%)
 - Less sludge disposal cost (10 15%)
 - Reduced maintenance work

REAL TIME CONTROL MODULES

Туре	RTC	Application	Compliance	Direct Savings on	
Nutrient Removal	Р	Chemical P-elimination	P _{tot}	- Precipitant - Sludge treatment /disposal	
	N	Nitrification (plug flow)	NH ₄ -N	- Energy (aeration intensity)	
	DN	Denitrification (IRC / Ext. C)	N _{tot}	- Energy (DO recovery, <i>IRC</i>) - External Carbon	
	SZ	Swing zone adjustment	N _{tot}	- Energy (aerated volume)	
	N/DN	Intermittent denitrification	N_{tot}	- Energy (aeration time/volume, DO recovery)	
	OXD	Simultaneous denitrification	NH ₄ -N		
	DO	Aeration	NH ₄ -N	- Energy (controlled DO)	
	SF	Nitrification (step feed)	NH4-N	- Energy (aeration intensity)	
	MOV	DO Control	NA	- Energy (aeration intensity)	
Sludge Mgmt.	SRT	Sludge age	NH ₄ -N	- Energy (for BOD removal)	
	ST	Sludge thickening		- Polymer, - Increased gas yield	
	SD	Sludge dewatering		- Polymer - Sludge disposal	
Industry	DOS	Nutrient dosing	N _{tot} , P _{tot} , NH ₄	- Urea - Phosphoric acid	
	DAF*1	Dissolved Air flotation	COD, TSS	- Coagulant, Polymer	

COMMITTED TO SUPPORT YOU FROM DESIGN TO OPERATION

