Instrumentation Based
Real-Time Process Optimization

November 13, 2018

Dave Rutowski
Claros Process Optimization
LOTS OF VARIATIONS IN PROCESS CONTROL

Operator Questions -

• What to measure – and why?
• Where to measure it?
• Is a daily grab sample representative, good enough?
 – Hint: It is not
• Is my plant running as designed?
• Is my instrument giving me correct readings?
• What do I do with the data?
• Do the chemical, power savings matter?
 – Hint: Absolutely
UTILITY MARKET’S BUSINESS ISSUES

- Retiring workforce - Institutional knowledge is leaving the industry
- Grab sample process changes lead to chasing problems & never catching them
- Budget concerns
- Compliance regulations
- Data management

Everyone is being asked to do more with less but how?
RTC – REAL TIME CONTROL.

Feed just enough chemical to meet setpoint.

Add just enough DO to meet the ammonia setpoint.

Feed exact polymer to meet sludge density setpoint.

Calculate & maintain the best SRT for your system.
ILLINOIS (CURRENT STATE)

Daily Flow / Phosphorus Concentration 2017
ILLINOIS PHOSPHORUS LEVELS

Based on 2017 Data

146 days Spent overfeeding Alum

Cost:

22,552 gallons excess used (Actual vs. Target of 0.95 mg/l)

= 5 truckloads of Alum

$27,062
ILLINOIS PHOSPHORUS LEVELS
DAILY COMPOSITE TESTING

<table>
<thead>
<tr>
<th>Range</th>
<th>Count</th>
<th>0.9-0.999</th>
<th>Count</th>
<th>0.8-0.899</th>
<th>Count</th>
<th>0.7-0.799</th>
<th>Count</th>
<th>0.6-0.699</th>
<th>Count</th>
<th>0.5-0.599</th>
<th>Count</th>
<th>0.4-0.499</th>
<th>Count</th>
<th>0.3-0.399</th>
<th>Count</th>
<th>Under 0.300</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Over 2.000</td>
<td>1</td>
<td></td>
<td></td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5-1.999</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>41</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.40-1.499</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>39</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.30-1.399</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.2-1.299</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.1-1.199</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0-1.099</td>
<td>24</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>76</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Under 0.300</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>146</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NOT MONITORED</td>
<td>106</td>
<td></td>
</tr>
</tbody>
</table>

HACH: Be Right™
OHIO WWTP PHOSPHORUS LEVELS

Based on 2017 Data:

Phosphorus Discharge permit limit = 1.0 mg/l
Average discharge = 0.40 mg/l

(87 days sampled in 2017)

Alum Overfeeding cost
(based on 0.95 mg/l target)

$78,999.60
Beaver Dam, WI
5.6 MGD (Design) Activated Sludge Plant
City of 16,000 residents
Limit of 1.0 mg/L Set point of 0.9 mg/L
Never deviates outside of 0.85 – 0.95
"If we were high one week, we overfed ferric to make sure the average for the month was below our 1.0 mg/L total phosphorus limit."

The average dose was 300 gpd at 12.5 gph.

Now during months of higher loading, the ferric feed rate may increase from 3 gph to 10 gph.

"Estimated annual savings of $50,000 to $70,000 have more than paid for the system."

Besides affordability, a major benefit was peace of mind. Previously, staff worried about whether the plant was over or at its limit for the month. "Now, the RTC controls the dose and I know we will be within our limit,“

"it has worked flawlessly."

Rob Minnema, Director or Utilities Beaver Dam, WI
RTC1017P MODULE
REAL TIME PHOSPHORUS CONTROL SOLUTION
RTC-P

Components

PHOSPHAX sc + Filtrax
- Controls RTC parameters
- Signal validation
- All communication capabilities

sc1000
- Calculates set-points in real time
- Interface for dosing pump
- Install in PLC cabinet

RTC-P
- Needed to determine loading

Plant Flow
- Control pump feed of precipitant based on PO₄ concentration

Dosing Pump
WHY HACH’S RTC FOR PHOSPHORUS CONTROL?

- Treatment Process is Optimized
 - Phosphorus load (Flow x Conc.) vs. Chemical effectiveness
- ROI is proven, can be switched between precipitants
- Cost savings can be redirected
- Compliance worries are gone
- Hach offers packaged integration!
PO4-P PRECIPITANT CONTROL MODULE

Chemical Feed: Primary Clarifier

Chemical Feed: Secondary
PHOSPHORUS ANALYZER– COLORMETRIC

- Sample Ranges
 - 0.0 – 2.0 mg/L PO4-P
 - 0.05 – 15.00 mg/L PO4-P
 - 1.0 – 50.00 mg/L PO4-P

- 5 – 120 minute measurement interval
 - Faster the interval...faster use of reagents
The Filtration Module prepares sample through two ultra-filtration membranes (0.15 μm).

Modules are immersed in the process tank.

Peristaltic pump pulls the sample through one filter at a time, allowing for optimal cleaning.

Unit automatically cleans by forcing vigorous stream of air bubbles against sides of the filter modules.
CONTROLLERS/TRANSMITTERS

Standard Features

- Highly configurable
- Up To 8 Sensors
- Plug And Play Functionality
- C1D2 Certification
- NEMA 4x/IP66
- 4 Relays
- Up To 12 Ma Outputs
- Up To 12 Ma Inputs
- SD Card For Data log And Configuration
- Networking
- Allows Up To 32 Devices Per Network

Communication Options

- Modbus Rs232/Rs485
- Modbus TCP/IP
- Profibus Dp
- Hart 7.2
PHOSPHORUS DOSING CONTROL DESIGN QUESTIONS

- Model based or feedback?
- Control or modelling/trending?
- How much Chemical is required to remove the Phosphorus?
- Control the pumps directly, or have a separate SCADA control loop?
- What if something else is limiting reaction?
- How to integrate sensor diagnostics into the controls?
- Who will train everyone on the system?
- How long will it take to write and test the logic?
- What if a sensor fails?
- How to store the data?
- Who will write the O&M Manual?
- Who will fix it if it breaks?
PHOSPHORUS DOSING CONTROL SOLUTIONS

Hach RTC-P Module
1. What to measure & where ✓ Done
2. Can both model and/or control ✓ Done
3. Definition of control algorithms ✓ Done
4. Programming of control algorithms ✓ Done
5. Implementation on hardware ✓ Done
6. Testing of software and hardware ✓ Done
7. User interface ✓ Done
8. User manual ✓ Done
9. Backup stages ✓ Done
10. Communications interface ✓ Done
11. Data stored on IPC ✓ Done
12. Onsite & remote support ✓ Done
13. Setting of the plant-specific parameters During commissioning
CLAROS PROCESS MANAGEMENT
Standardized RTC control modules

- Adapt asset plant operation to varying load situations and plant performance
 - Improved compliance (minimize risk)
 - Reduced OPEX / Short ROI (economically viable)
 - Improved process transparency

All analytical input signals **validated** by Instrument Management / PROGNOSYS®

- High reliability, high uptime
Large number of installations

- **1850 sites** in EU, US, China operating an RTC
 - 70% of plants between 2-8 MGD
- **3150 control modules** in operation
- Growing number of industrial RTC

Experienced Global RTC Team

- Growing team of RTC consultants
 - 28 in EU, 5 in US
- Sales & Service NA: 250 associates
- Centralized (US and EU) RTC Service/Commissioning experts providing remote support & monitoring
Standardized modules for

- Nitrification / Denitrification
 - 10 - 20% aeration energy savings above conventional NH3 trim optimization
 - Improved alkalinity
 - Reduced denitrification in Secondary Clarifiers

- Chemical phosphorous removal
 - Savings on precipitant (10 - 50%) and sludge disposal
 - Process stability by reducing loss in alkalinity

- Sludge treatment
 - Savings on polymer (15 - 20%)
 - Increased gas yield (5 - 10%)
 - Less sludge disposal cost (10 - 15%)
 - Reduced maintenance work
REAL TIME CONTROL MODULES

<table>
<thead>
<tr>
<th>Type</th>
<th>RTC</th>
<th>Application</th>
<th>Compliance</th>
<th>Direct Savings on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nutrient Removal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| P | | Chemical P-elimination | P_{tot} | - Precipitant
- Sludge treatment /disposal |
| N | | Nitrification (plug flow) | $\text{NH}_4\text{-N}$ | - Energy (aeration intensity) |
| DN | | Denitrification (IRC / Ext. C)| N_{tot} | - Energy (DO recovery, IRC)
- External Carbon |
| SZ | | Swing zone adjustment | N_{tot} | - Energy (aerated volume) |
| N/DN | | Intermittent denitrification | N_{tot} | - Energy (aeration time/volume, DO recovery) |
| OXD | | Simultaneous denitrification | N_{tot} | - Energy (controlled DO) |
| DO | | Aeration | $\text{NH}_4\text{-N}$ | - Energy (aeration intensity) |
| SF | | Nitrification (step feed) | $\text{NH}_4\text{-N}$ | - Energy (aeration intensity) |
| MOV | | DO Control | NA | - Energy (aeration intensity) |
| Sludge Mgmt. | | | | |
| SRT | | Sludge age | $\text{NH}_4\text{-N}$ | - Energy (for BOD removal) |
| ST | | Sludge thickening | | - Polymer,
- Increased gas yield |
| SD | | Sludge dewatering | | - Polymer,
- Sludge disposal |
| Industry | | | | |
| DOS | | Nutrient dosing | N_{tot}, P_{tot}, NH_4 | - Urea
- Phosphoric acid |
| DAF*1 | | Dissolved Air flotation | COD, TSS | - Coagulant, Polymer |

HACH

Be Right™
COMMitted to support you from design to operation