

New Versions of Proven Methods to Optimize P Removal and Recovery 13 November 2018

Jim Fitzpatrick Principal Process Engineer

Optimize Conventional Treatment Processes

Convert Soluble Reactive P (SRP) to Particulate P

Biological Options OR Chemical Options

<u>Clarification</u> Remove Particles from Liquid

Settling Options OR Filtration Options OR Flotation Options

Primary, Secondary and Tertiary Applications

Disadvantages increase as chemical dose increases to meet lower TP limits

TP<0.1 mg/L is Different Physicochemical Process than TP<1 mg/L

- Fe³⁺/Al³⁺ reactions with alkalinity predominate to form hydroxyl floc for PO₄ <u>co-precipitation</u>, <u>adsorption and sweep coagulation</u>
- Much different than 1 mg/L limits where conventional PO₄ precipitation dominates

- Enhanced clarification/filtration needed
- Sludge recirculation helps lower chemical dosage
- Polymer and/or ballasting agent also required for some clarification options

Mainstream Thinking for Enhanced Biological Phosphorus Removal (EBPR)

- Volatile fatty acids (VFAs) drive EBPR mechanism of phosphate accumulating organisms (PAO)
- Anaerobic zone required
- Mixture of VFAs required for PAO to outcompete glycogen accumulating organisms (GAO)

PAO Luxury Uptake Mechanism (Fuhs & Chen, 1975)

First Primary Fermenter Kelowna BC, 1979

S2EBPR is New Reality for EBPR

Traditional EBPR

- Mainstream anaerobic zone
- PAO like *Accumulibacter* needs volatile fatty acids (VFA) to trigger P removal
- Poor performance in cold, wet conditions due to lack of sewer hydrolysis and fermentation to generate VFA

- Side-stream anaerobic fermenter grows PAO like *Tetrasphaera* → produce VFA <u>and</u> uptake P in anoxic/oxic <u>and</u> denitrify in anoxic zone
- Not dependent on influent VFA
- Works together with Accumulibacter
- Deeper anaerobic conditions fatal for GAOs

Good news for cold, weak influents!

- More efficient use of influent carbon for TP and TN removal
- Less need for chemicals (ferric, alum, methanol, etc.)
- Negligible impact from cold or wet-weather flows

Long-Term S2EBPR Proof in British Columbia

Regional District of Central Okanagan

Westside Regional WWTP aka West Bank WWTP (West Kelowna, BC)

Parameter	Filtered Effluent Average
BOD	< 5 mg/L
TSS	< 2 mg/L
TN	< 6 mg/L
ТР	< 0.15 mg/L

S2EBPR Busts Bio-P Myths

Myth	Reality
Bio-P can't reliably achieve TP<1 mg/L	S2EBPR generates VFA to reliably drive TP down to same levels as chem-P (typically <0.2-0.5 mg/L)
All biomass must pass through anaerobic zone	S2EBPR works with as little as 7-8% of the RAS fermented
Bio P doesn't work when it's cold	Bio P works at low temperature if VFA is present + S2EBPR generates VFA, sewer fermentation not needed <u>+ PAOs outcompete GAOs at low temperatures</u> → S2EBPR works in winter, spring, summer and fall
Bio P doesn't work with wet- weather flows	Side-stream fermenter is not in main liquid stream + Fermentation and PAO release/uptake unaffected <u>+ PAO biomass settles better than AOB/nitrifying biomass</u> → S2EBPR works during peak wet-weather flow events

Eastern Kansas Proves S2EBPR Works during Wet and Cold

Cedar Creek WWTP (Olathe, Kansas)

- 5.3-mgd ADF | 5-stage BNR with S2EBPR
- No filter, backup ferric not used
- Average effluent TP <0.5 mg/L, TN <6.0 mg/L
- Operating since Fall 2012

Wakarusa WRF (Lawrence, Kansas)

- 2.5-mgd ADF | 3-stage BNR with S2EBPR
- No filter, no chemicals
- Average TP<0.2 mg/L, OP<0.15 mg/L
- No upset during 3Q wet-weather event

Other S2EBPR Examples

- Johnson County, Kansas
- Sacramento, California
- Lawrence, Kansas
- Olathe, Kansas
- West Kelowna, British Columbia
- Blue Lake & Seneca WWTP, Minnesota
- Joppatowne, Maryland
- South Cary, North Carolina
- St. Cloud, Minnesota
- Henderson, Nevada
- Pinery AWWTP, Colorado

Worldwide: 75+ S2EBPR facilities in 10+ configurations

In-line Mixed Liquor Fermenter (Pinery, Henderson, St. Cloud, etc.)

S2EBPR Design for 181-mgd BNR EchoWater Project (Sacramento, California)

Off-line Mixed Liquor Fermenter with 5-stage Bardenpho 5.3-mgd Cedar Creek WWTP (Olathe, Kansas)

WWTmod

Rethinking EBPR: What do you do when the model will not fit real-world evidence?

Dunlap et al.

Patrick Dunlap¹, Kelly Martin¹, Geny Stevens², Nick Tooker³, James Bamard¹, April Gu³, Imre Takacs⁴, Andy Shaw¹, Annalisa Onnis-Hayden³, Yueyun Li³

¹Black and Veatch Corporation, 8400 Ward Parkway, Kansas City, Missouri (Email: DunlapP/J@bv.com, MartinKJ@bv.com, ShawAR@bv.com, BarnærdJL@bv.com) ³AECOM (Email: Gery). Steven: Gaecon.com) ³Department of Environmental Engineering, Northeastern University (Email: april@coe.neu.edu, acomts@coe.neu.edu, tooker.n@husky.neu.edu) ⁴Dvnamita.Nyons, France(Email: Imre@chynamita.com)

Abstract

Sidestream enhanced biological phosphorus removal (S2EBPR) ferments primary sludge, return activated sludge, or mixed liquor, with the goal of stabilizing EBPR performance through VFA production and the likely enrichment of polyphosphate accumulating organisms (PAOs). Existing EBPR process models have been shown to significantly underestimate the degree of P-removal when S2EBPR is implemented. In this study a framework is presented of new model approaches and a new conceptual EBPR model is developed for one of them based on lab-scale experiments and full-scale S2EBPR process data. We propose three new PAO model structures that vary in

Real-World EBPR Outperforms Current Models

- B&V, Northeast University and Dynamita team helping update ASM model with S2EBPR.
- For now we have design criteria from real-world operations, and "work-arounds" with current ASM-based software (BioWin, GPS-X, etc.).
- Why did profession miss this until now?

 - Impossible to achieve with NO₃ or DO present
 - Turbulence, air entrainment, or coarse bubble air mixing prevent low ORP
 - Too much mixing and/or too much aeration inhibit *Tetrasphaera*

Other Side Benefits of S2EBPR

- Increased process stability
 - Biological selector...less sludge bulking, better SVI
- Cooperative Denitrification
 - Recover some alkalinity to improve nitrification and effluent buffering
 - Offset some O₂ demand to lower aeration costs
 - Decrease N₂ bubbles in clarifier sludge blanket...less floating sludge
- Lower energy
- Potential nutrient recovery

It's not just about effluent limits

Energy/Nutrient Nexus Anaerobic Digestion Working with BNR

From Shimp, G.F.; Barnard, J.L.; Bott, C.B.; It's always something. *Water Environment & Technology*, June 2014, 26(6), 42-47.

<u>Issues</u>

- PAOs in WAS release (PO4)³⁻, Mg²⁺ and K⁺ under anaerobic conditions
- NH⁴⁺ released later during digestion

Consequences

- Struvite scaling
- Vivianite scaling if Fe²⁺ present
- NH⁴⁺ and (PO4)³⁻ recycle to main liquid stream
- Decreased biosolids dewaterability

Opportunities

- Struvite sequestration/recovery helps avoid unintended consequences
- Lightning Round 4

Jim Fitzpatrick

Principal Process Engineer +1 913-458-3695 FitzpatrickJD@bv.com

THANK YOU!! Bob O'Bryan Sierra McCreary

Project Manager +1 614-454-4397 OBryanBR@bv.com Project Manager +1 614-454-4394 <u>McCrearySB@bv.com</u>

Bullpen

Drivers

- Aquatic Ecology
- Agricultural Needs
- Regulatory Pressures
- Economics

Source: P.R. Easley, Harmful Algal Blooms (HABs) and You, Southwest Water Works Journal, 27(2), Summer 2016

Increasing Population Requires Better Phosphorus Management

"The phosphorus content of our land, following generations of cultivation, has greatly diminished. It needs replenishing. I cannot over-emphasize the importance of phosphorus not only to agriculture and soil conservation, but also the physical health and economic security of the people of the nation. Many of our soil deposits are deficient in phosphorus, thus causing low yield and poor quality of crops and pastures...."

About Phosphorus

"We may be able to substitute nuclear power for coal power, and plastics for wood, and yeast for meat, and friendliness for isolation, but for phosphorus there is neither substitute nor replacement."

Isaac Asimov

-President Franklin D. Roosevelt, 1938

Nutrient Recovery = **POTWs' Return to Agricultural Roots**

Near and Far. Large and Small. Point and Non-Point.

Phosphorus → freshwater harmful algal blooms (HAB) Nitrogen → Estuary and marine eutrophication and hypoxia

Data source: Nancy N. Rabalais, LUMCON, and R. Eugene Turner, LSU

Ohio Nutrient Reduction Strategy 2015 Addendum

Ohio regulatory strategies

Similar to Others in Great Lakes and Upper Ohio River Watersheds

- Increased monitoring, research, and planning
- Integrated and adaptive watershed management
 - **1.** Agricultural \rightarrow Best management practices (BMPs)
 - 2. Urban Stormwater \rightarrow Overflow control, green infrastructure
 - 3. POTWs → Tiered technology-based limits (BNR, ENR, LOT, etc.)

2012 Great Lakes Water Quality Agreement

21 ₹

Figure 1. Size of the Gulf of Mexico hypoxic zone from 1985 to 2013.

Sometimes Less Nitrates <u>Increase</u> Harmful Algal Blooms

Minimize internal reservoir nutrient cycling

- Keep reservoir mixed/aerated. Prevent stratification.
- Supply <u>nitrates</u>, air, and/or oxygen to hypolimnion.
 - Occoquan Reservoir Cubas et al., *Water Environment Research*, Feb 2014, 123-133.
 - Crafton et al., "Assessment of Nutrient Dependency of a Mixed Cyanobacteria Culture", OWEA, 2017

Case-by-case watershed studies are required

Historical Costs of Different Practices

• Low hanging fruits:

Source: WEF (2015) The Nutrient Roadmap, Figures 5.12 and 5.13

- TP removal → POTW to 0.15 < TP < 0.05 with side-stream enhanced biological phosphorus removal (S2EBPR) and filtration
- TN removal \rightarrow Agriculture (sometimes POTW)

Not a substitute for project-specific cost/benefit evaluations

Tile Field Woodchip Filters for Nitrate Removal

Source: L. Christiansen et al., Woodchip Bioreactors for Nitrate in Agricultural Drainage, Iowa State University, October 2011

Tile Field Filters for both N and P Removal

Source: L.E. Christianson et al, Water Research 121 (2017) 129-139

University of Illinois research finds potential to pair P adsorption media filters with denitrifying woodchip filters

Optimize Conventional Treatment

- Phosphorus Removal
- Fermentation and VFA
- Side-stream EBPR (S2EBPR)

Conventional Chemical P Removal Fundamentals

1. Precipitant / Coagulant Addition. Rapid mix. Add metal salt (Ca²⁺, Fe³⁺, Al³⁺). Fe²⁺ option if oxidized/adsorbed.

2. Flocculant Addition. <u>Optional</u> depending upon P limit and clarification technology. Polymer. Ballast in some cases.

Turbulence

3. Flocculation. Medium to low turbulence. Build floc and "sweep" small particles. Enhance floc removal.

4. Clarification. Separate solids from liquids. Settling, filtration, or flotation. Particle Conditioning

Same mechanisms as turbidity removal for potable water and industrial process water applications

Steps 1, 2 and 3 are keys to how well Step 4 will work

Applying BNR Lessons from Mother Nature

"We've come a long way, baby" - Loretta Lynn, 1978

Phostrip Process (1962)

Early Phosphorus Removal & Recovery

- High-rate activated sludge process
 - No nitrification
 - All influent to aeration basin

• RAS stripper tank

- 30-40 hr SRT
- P release from deep anaerobic conditions

• Supernatant treated with lime

- P removed as calcium hydroxylapatite, $Ca_3(PO_4)_2 \cdot H_2O$
- Fuhs & Chen find phosphate accumulating organism (PAO) Acinetobacter

In hindsight...mainstream P uptake...<u>side-stream</u> P release and recovery

30 ج

S2EBPR in Original Bardenpho Pilot

Side-stream anaerobic mixed liquor fermenter

Four Major S2EBPR Process Examples

WERF research team found S2EBPR in 75+ facilities in 10+ configurations

S2EBPR at Westside Regional WWTP (West Kelowna, BC)

10.00

9.00

8.00

Tetrasphaera ferment and denitrify. Nonfilamentous variety also PAO.

WERF Team Found S2EBPR in 75+ Facilities in 10+ Configurations

	Legend
PE-Primary Effluent	AX/AE-SND
AN-Anaerobic	PSFR-Primary Sludge Ferment
AX-Anoxic	FR-Mixed Liquor/RAS Ferment
AE-Aerobic	TF-Trickling Filter

S2EBPR retrofits more easily than conventional EBPR

OHO – Other Heterotrophs	FAC – Facultative Bacteria
TSA – Tetrasphaera	ACC - Accumulibacter

New Understanding with S2EBPR

- Traditional concept was one PAO -Accumulibacter
- Deeper anaerobic conditions also select for *Tetrasphaera* (ORP<-250 mV)
 - Another class of PAO!
 - Deep anaerobic conditions are fatal for undesirable GAOs!
- Tetrasphaera ferment higher carbon compounds, take up phosphorus and produce additional VFA that can support Accumulibacter...and also denitrify.
- Current process models under-predict S2EBPR performance

Motivation for S2EBPR

Motivations

- Stable anaerobic conditions reduce upsets
- Internal VFA generation reduces reliance on influent characteristics
- Microbial selection leads to more efficient and effective use of carbon
- More retrofit options

Drawbacks

- Relatively new and gaining adopters
- Research remains for predictive modeling
- May need odor control

Energy Efficient Mixing is One Key

• Static Mixing Chimneys

• Low-Speed Impellers

S2EBPR with 5-Stage Bardenpho at Tomahawk Creek

- 19-mgd design annual average, 57-mgd peak
- 4 trains
- Side-stream RAS fermenters instead of traditional mainstream anaerobic zones
- Mainstream anoxic, oxic, post-anoxic and reaeration zones
- Surface MLSS wasting to help decrease SVI

Tomahawk Creek Dual-Purpose Tertiary Process

39

J. Robinson (1974) A Study of Density Currents in Final Sedimentation Tanks, M.S. Thesis, University of Kansas.

From Analysis & Design for the Budds Farm Final Clarifiers, MMI Engineering 2011

McKinney Floor Baffle Alternative to "Standard" Energy Dissipating Inlet to Improve Secondary Clarification

- Peripheral density current baffles well established in U.S. and abroad
- Floor baffle standard in UK and Germany
- CFD model and full-scale pilot at MWRDGC's 330-mgd O'Brien WRP. Retrofits in progress.

h = 35 cm

From T.E. Tokyay and M.H. Garcia, CFD Modeling of Final Settling Tanks of NSWRP, Chicago, IL (2011) , University of Illinois at Urbana-Champaign

Tomahawk Creek Secondary Clarifiers

- Four basins @ 125-ft diameter (38.1 m) x 12.7-ft SWD (3.86 m)
- Center feed column with feedwell and floor baffle
- Peripheral effluent launder with density current baffle extension
- Spiral rake sludge scrapers
- Full radius beaching scum trough and twin skimmers
- Walk-on launder covers

Tomahawk Creek Filter Facility Plan View

Very Small Footprint

Tomahawk Creek Filter Facility Section Views

Pile Cloth Filter Cell (Typical of 8)

Backwash and Solids Pump Room (Typical of 4)

Avoid Unintended Consequences

- Solutions to Biosolids Impacts
- Control Nuisance Struvite
- Reduce Nutrient Return Load
- Recover Nutrients

<u>Hydroxylapatite Formation (pH~9)</u> $3Ca^{2+} + 2HPO_4^{2-} + H_2O \leftrightarrow Ca_3(PO_4)_2 \cdot H_2O + 2H^+$

Struvite Formation (pH~8) $NH_4^+ + Mg^{2+} + HPO_4^{2-} + 6H_2O \leftrightarrow NH_4MgPO_4 \cdot 6H_2O + H^+$

Brushite Formation (pH~4.5-6.5) $Ca^{2+} + H_2PO_4^- + 2H_2O \leftrightarrow CaHPO_4 \cdot 2H_2O + H^+$

Biosolids Dewaterability

- Plants converted to EBPR/S2EBPR have experienced deterioration in dewatering performance
 - Lower cake solids
 - Higher polymer dose
- Two theories
 - High ortho-P
 - High ratio of monovalent to divalent cations

Biosolids Dewaterability

- Plants converted to EBPR/S2EBPR have experienced deterioration in dewatering performance
 - Lower cake solids
 - Higher polymer dose
- Two theories
 - High ortho-P
 - High ratio of monovalent to divalent cations

Excess monovalent cations disrupt flocculation of biosolids, degrading dewaterability

Answering with Side-Stream Crystallizers

Goals / Benefits

- Minimize nuisance scaling and deposits
- Improve biosolids dewaterability
- Reduce P & N recycle loads
- Decrease P content of biosolids
- Recover fertilizer product

Turn Struvite Problem into the Answer

Optional recovery add-on •

- Decrease P content of biosolids •

Project-specific evaluation and selection required

World's Largest Nutrient Recovery Facility

- 1.4 BGD capacity
- TP ≤ 1 mg/L (1 Feb 2018)
 - Optimize EBPR
 - Reduce TP recycle
- Predicted struvite recovery
 - 5,350 lb/day PO₄-P
 - 7,700 ton/yr fertilizer

Pearl® Reactor (Upper Level)

16-mgd Liverpool WWTP Medina County, Ohio

Design-Build Improvements Include Struvite Sequestration + S2EBPR

Basis of

Design

Criterion	Pearl + WASSTRIP	AirPrex w/ Harvesting	AirPrex	Degas + Ferric	Ferric
1. WWTP Performance					
Reduce nuisance precipitate formation	High	Medium	Medium	Medium	Low
Improve phosphorus removal capacity	High	Medium	Medium	High	Medium
Improve reliability to meet TP limits	High	Medium	Medium	Medium	Medium
Offers improvements to the dewatering process	High	High	High	Medium	High
2. Environmental / Health / Social / Economic					
Perform nutrient recovery	High	Medium	Low	Low	Low
Reduce chemical sludge quantity produced/disposed	High	High	Medium	Low	Low
3. Financial					
Net Present Value of alternative	High	Medium	Low	Medium	Medium
Capital costs of alternative	High	Medium	Low	Medium	Medium
4. Risk Assessment					
Technological track record	Medium	Low	Low	High	High
Manpower hours and skill required	Medium	Medium	Medium	Low	Low

On schedule for 2019 completion under energy savings performance contract

World's Largest Facility (DEMON[®], Wnder Construction)

More Affordable, Reliable and Recoverable Nutrient Removal

Side-Stream Deammonification Gaining Traction for TN Control

- Minimizes ammonia return
- Digester liquors ideal for anammox
- Advantages to conventional nite/denite:
 - Less energy
 - No carbon required
 - Lower alkalinity demand

Full-Scale Installations **Pilots** St. Joseph, MO HRSD, VA Tomahawk WWTF, Johnson County, KS Alexandria, VA Mill Creek WWTP, Cincinnati, OH ■ Greeley, CO Henrico, VA ■ Guelph, Ontario, CAN Brooklyn, NY Durham, NC Egan WRP, MWRDGC, IL ■ Washington, DC Robert W. Hite WRF, Denver, CO Pierce County, WA Joint WPCP, Los Angeles County, CA Egan WRP, MWRDGC, IL

Wet-Weather Strategies

- Don't Upset Your BNR Bugs
- Different Ways to "Weather the Storm"

MJHB with Wet-Weather Step-Feed

Deep Step-Feed Helps "Weather the Storm"

- Temporary change to contact stabilization mode for wet-weather flows
- "Biological contact" or "biocontact"
- Good for plug-flow basins

Maximizing biological treatment of wetweather flows

Biomass Transfer Accomplishes Same

- Transfer some RAS or MLSS to offline storage.
- Return biomass after storm flows pass.
- Good for complete-mix basins, oxidation ditches, etc.

Another way to reduce SLR to clarifiers ... temporarily

More Affordable, Reliable and Recoverable Nutrient Removal

Offline Biomass Storage Rogers, Arkansas 5-stage Bardenpho Oxidation Ditch

Blending or Auxiliary Treatment for Higher Peaking Factors

Consider Dual-Use Auxiliary Facilities for More Benefit Than Just Infrequent Wet Weather

Examples include Fox Metro, IL; Rushville, IN; Johnson County, KS; Little Rock, AR

Triple Bottom Line Evaluation

EHRT Process	EHRT Technology
CES with Ballasted Flocculation	ACTIFLO [®] (Veolia/Kruger)
	CoMag [®] (Evoqua)
Compressible Media Filtration	FlexFilter [™] (WesTech/WWETCO)
	Fuzzy Filter™ (Schreiber)
Pile Cloth Media Filtration	MegaDisk [®] (Aqua-Aerobics)

Dual-Use High-Rate Filter for Adams Field WWTF

- Dec 2015 NPDES permit, no comment from USEPA
- 2016 Onsite HRF pilot, TBL evaluation of conceptual designs, reference facility tours
- Pile cloth filter recommended:
 - Improve existing UV disinfection
 - Simple O&M
 - Lowest cost for tertiary dual-use
 - No alkalinity or effluent foaming issues
 - Non-potable reuse potential

60% design completed. On track for startup in 2019.

Closing Thoughts and Open Discussion

- BNR Process Intensification
- \$10M Prize to Lower Phosphorus

aeration membranes support low-energy biofilm nitrification and denitrification

Process Intensification Examples

• Granular Activated Sludge

- Nereda[®] licensed to Aqua-Aerobic Systems
- B&V non-disclosure agreement with RHDHV

• Membrane Aerated Biofilm Reactor

- GE ZeeLung
- OxyMem OxyFILM
- Fluence/Emefcy
- 1. Less energy, smaller footprint, lower costs than conventional AS
- 2. S2EBR can be integrated with these fixed-film nitrogen removal technologies

Seeking Radically Cheaper Technology for <0.01 mg-P/L

Prize Structure

Stay tuned!

- http://www.barleyprize.com/
- #barleyprize
- B&V on judging panel