Beneficial Use of Biosolids Academic Response to 2018 OIG Report W4170 MULTISTATE RESEARCH COMMITTEE RESPONSE TO USEPA OIG REPORT NO. 19-P-00021

Nicholas Basta
Professor of Soil and Environmental Science
School of Environment and Natural Resources
Environmental Science Graduate Program, Director
Ohio State University, Columbus, OH

2021 Plant Operations and Lab Workshop June 2-3, 2021

USEPA Office of Inspector General Report No. 19-P-0002 Nov 15, 2018

EPA Unable to Assess the Impact of Hundreds of Unregulated Pollutants in Land-Applied Biosolids on Human Health and the Environment

OIG Report:

"...[EPA] lacked the data or risk assessment tools needed to make a determination on the safety of 352 pollutants found in biosolids...[including] 61 designated as acutely hazardous, hazardous or priority pollutants in other programs"

Agency Comments on Draft Report and OIG Evaluation Appendix D of OIG Report

Response from USEPA Office of Surface Water and Office of Enforcement and Compliance Assurance

"We are concerned about how the science is presented in the OIG report It is biased and raises alarm ..and is taken out of context"

Biosolids Stakeholders Greatly Impacted by OIG Report

USDA W4170 Multistate Research Committee members decided to Respond to OIG Report

Groups of 50+ scientists from 30 states with extensive history on biosolids

USEPA Office of Water; USEPA ORD; USDA ARS Biosolids Regional Groups (NW, NEBRA, CASA, MWRD, Mid Atlantic Other biosolids stakeholders

W170 provided research data and risk assessment support to develop risk based guidelines (Tables 2, 3, 4) in Part 503 1993 rule

Cooperative Research on Land Application of Biosolids since 1972

Response Document

On W4170 website: https://www.nimss.org/projects/18624 underline outline—attachment Direct link:

nimss.org/system/ProjectAttachment/files/000/000/502/original/W4170%20R esponse%20to%20OIG%20Report%20July%2023%202020%20final.pdf

- Response to chemical issues, Dr. Nick Basta, OSU
- PFAS, Dr. Linda Lee, Purdue
- Response to Antibiotic and pathogens issues
 Dr. Ian Pepper, Univ. of Arizona
- Overall review, Greg Kester CASA

We reviewed chemicals identified by OIG for further review (including 61 regulated chemicals)

- Identified 380 chemicals found in biosolids (including 352 in OIG Report)
 - National sewage sludge surveys (1988,2003,2009)
 - Biennial reviews (2003-2017)
- Identified 61 regulated chemicals for further review
 - RCRA P-list (acutely toxic) and U-list (toxic)
 - NIOSH Hazardous Drugs list
 - Priority Pollutant list

The Evaluation

Hierarchical approach

Collected following and compared concentration data to...

- 1. Residential Soil Screening Limit (TR=1E-06; THQ=1.0); if higher, compared with
- 2. Part 503 Recommendations
 List of 200, List of 50, Risk-based screening limit. *If not addressed, compared with*
- 3. Other risk-based screening limit (Ohio EPA VAP) if higher, compared with
- 4. Persistence (half-life, mobility). If half-life >1year, then

Remaining chemicals may need further investigation

61 Regulated Chemicals identified by OIG

Organics

2,3,7,8 Tetrachlorodibenzo-P-dioxin

2-Propanone

Benzoic acid

Bis (2-ethylhexyl) phthalate

Carbon tetrachloride

Chloroaniline. 4-

Chloroform

Chloronaphthalene, 2-

Cresol, p-

Cyanide

Dimethyl phthalate

Di-n-octyl phthalate

Di-n-butyl phthalate

Di-II-batyl pritilalate

Dichlorophenol, -2,4

Ethylbenzene,

Nitrophenol, p-

Methylene Chloride

Tetrachloroethylene

Toluene

Nitrosamines

N-nitrosodibutylamine (NDBA)

N-nitrosodiethylamine (NDEA)

N-nitrosodimethylamine (NDMA)

N-nitroso-di-n-propylamine (NDPA)

N-nitrosodiphenylamine (NDPhA)

N-nitrosopiperidine (NPIP)

N-nitrosopyrrolidine (NPYR)

Pesticides

Dichlorobenzene, 1,3-Dichlorobenzene, 1,4-

Dimethoate

Endosulfan, α

Endosulfan, β

Heptachlor epoxide

Pentachloronitrobenzene

Metals

Antimony Beryllium Silver

Thallium

Hormones

Estradiol, 17α-

Estradiol, 17β-

Estradiol-3-benzoate, β -

Estriol (estradiol)

Estrone

Ethynyl estradiol, 17α-

Norethindrone (norethisterone)

Norgestimate

Norgestrel (levonorgestrel)

Progesterone

Testosterone

Polycyclic Aromatic Hydrocarbons (PAHs)

Benz(a)anthracene

Benzo(a)pyrene

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Chrysene

Fluoranthene

Naphthalene

Phenanthrene

Pyrene

Pharmaceuticals

Trichlorophenol, 2,4,5-

Carbamazepine

Cyclophosphamide

Mestranol

Sodium valproate

Warfarin

1. All concentrations below the USEPA RSSL (if available) or ND (in red)

Organics

2,3,7,8 Tetrachlorodibenzo-P-dioxin*

2-Propanone

Benzoic acid*

Bis (2-ethylhexyl) phthalate

Carbon tetrachloride

Chloroaniline, 4-

Chloroform

Chloronaphthalene, 2-

Cresol, p-

Cyanide

Dimethyl phthalate

Di-n-octyl phthalate

Di-n-butyl phthalate

Dichlorophenol, -2,4

Ethylbenzene

Nitrophenol, p-*

Methylene Chloride

Tetrachloroethylene

Toluene

Nitrosamines

N-nitrosodibutylamine (NDBA) N-nitrosodiethylamine (NDEA)

N-nitrosodimethylamine (NDMA)

N-nitroso-di-n-propylamine (NDPA)

N-nitrosodiphenylamine (NDPhA)

N-nitrosopiperidine (NPIP)

N-nitrosopyrrolidine (NPYR)

Pesticides

Dichlorobenzene, 1,3-Dichlorobenzene, 1,4-

Dimethoate

Endosulfan, α

Endosulfan, β

Heptachlor epoxide

Pentachloronitrobenzene

Metals

Antimony Beryllium Silver Thallium

Hormones

Estradiol. 17α-*

Estradiol, 17β-*

Estradiol-3-benzoate, β-*

Estriol (estradiol) *

Estrone*

Ethynyl estradiol, 17α-*

Norethindrone (norethisterone)*

Norgestimate*

Norgestrel (levonorgestrel)

Progesterone*

Testosterone*

Polycyclic Aromatic Hydrocarbons (PAHs)

Benz(a)anthracene*

Benzo(a)pyrene*

Benzo(b)fluoranthene

Benzo(k)fluoranthene

Chrysene

Fluoranthene

Naphthalene

Phenanthrene*

Pyrene

Pharmaceuticals

Trichlorophenol, 2,4,5-

Carbamazepine*

Cyclophosphamide*

Mestranol*

Sodium valproate*

Warfarin

2. Deemed low-risk by Part 503a (in red)

Organics

2,3,7,8 Tetrachlorodibenzo-

Benzoic acid

Bis (2-ethylhexyl) phthalate Carbon tetrachloride

Di-n-octyl phthalate

Ethylbenzene

Nitrophenol, p-

P-dioxin2-Propanone

Chloroaniline. 4-

Nitrosamines

N-nitrosodimethylamine (NDMA)

N-nitroso-di-n-propylamine (NDPA)

N-nitrosodiphenylamine (NDPhA) N-nitrosopiperidine (NPIP)

Pesticides

Dimethoate

Heptachlor epoxide Pentachloronitrobenzene

Metals

Thallium

Hormones

Estradiol. 17α-

Estradiol, 17β-

Estradiol-3-benzoate, β-

Estriol (estradiol)

Estrone

Norethindrone (norethisterone)

Norgestrel (levonorgestrel)

Progesterone

Testosterone

Polycyclic Aromatic Hydrocarbons (PAHs)

Benz(a)anthracene Benzo(a)pyrene

Benzo(b)fluoranthene Benzo(k)fluoranthene

Naphthalene

Phenanthrene

Pharmaceuticals

Trichlorophenol, 2,4,5-Carbamazepine

Cyclophosphamide

Mestranol Sodium valproate

3. Below Ohio EPA Voluntary Action Program (Brownfields) RSSL

Organics

2,3,7,8 Tetrachlorodibenzo-P-dioxin2-Propanone

Benzoic acid

Chloroaniline, 4-

Di-n-octyl phthalate

Ethylbenzene

Nitrophenol, p-

Nitrosamines

N-nitroso-di-n-propylamine (NDPA)

N-nitrosodiphenylamine (NDPhA)

N-nitrosopiperidine (NPIP)

Pesticides

Dimethoate

Metals

Thallium

Hormones

Estradiol. 17α-

Estradiol, 17β-

Estradiol-3-benzoate, β-

Estriol (estradiol)

Estrone

Norethindrone (norethisterone)

Norgestrel (levonorgestrel)

Progesterone

Testosterone

Polycyclic Aromatic Hydrocarbons (PAHs)

Benzo(b)fluoranthene* Benzo(k)fluoranthene

Naphthalene

Pharmaceuticals

Trichlorophenol, 2,4,5-

Carbamazepine

Cyclophosphamide

Mestranol

Sodium valproate

4. Likely to degrade within 1 year (half-life <3 months)

Organics 2,3,7,8 Tetrachlorodibenzo-P-dioxin2-Propanone Benzoic acid Bis (2-ethylhexyl) phthalate Carbon tetrachloride Chloroaniline, 4Chloroform Chloronaphthalene, 2Cresol, pCyanide Dimethyl phthalate Di-n-octyl phthalate Di-n-butyl phthalate Di-n-butyl phthalate Dichlorophenol, -2,4

Nitrophenol, p-

Nitrosamines N-nitrosodibutylamine (NDBA) N-nitrosodiethylamine (NDEA) N-nitrosodimethylamine (NDMA) N-nitroso-di-n-propylamine (NDPA) N-nitrosodiphenylamine (NDPhA) N-nitrosopiperidine (NPIP) N-nitrosopyrrolidine (NPYR) Hormones Po

Hormones Estradiol, 17αEstradiol, 17βEstradiol-3-benzoate, βEstriol (estradiol) Estrone Ethynyl estradiol, 17αNorethindrone (norethisterone) Norgestimate Norgestrel (levonorgestrel) Progesterone Testosterone

Pharmaceuticals Trichlorophenol, 2,4,5Carbamazepine Cyclophosphamide Mestranol Sodium valproate Warfarin

Remaining chemicals that may need further investigation

No SSLs	
Carbamazepine Cyclophosphamide Estradiol-3-benzoate, β- Estriol (estradiol) Estrone Mestranol Norethindrone (norethisterone) Norgestrel (levonorgestrel) Progesterone Sodium valproate Testosterone Trichlorophenol, 2,4,5-	Hormones and medications.

Above SSLs	
Chloroaniline, 4-	6/84 TNSSS samples above USEPA Cancer RSSL; Child eating 200mg/day* will not exceed CalEPA cancer standard of 1.5ug/day.
"2,3,7,8 TETRACHLORODIBENZO-P- DIOXIN"	EPA considered setting a limit of 300ng/kg, but declined to regulate. 4/113 samples exceeded 300ng/kg in 2003 NSSS

^{*}Part 503a "child eating biosolids" exposure pathways assumes children consume 200mg biosolids/day

Conclusions

Most of the 61 hazardous chemicals listed in the OIG report have been previously assessed by U.S. EPA

Most chemicals of concern have low concentrations or persistence in biosolids and are low-risk to human health

What about the 300+ non-listed chemicals?

- Not on the NIOSH, Priority Pollutant, or RCRAP / U lists
- Many non-toxic human nutrients (calcium, sodium)
- Some recognized as toxic but not yet listed (PFAS)

Evaluation approach for non-listed chemicals

- Group into chemical category
 - Organics, pesticides, antibiotics...
- Biosolids review articles for each chemical category
 - "Review of contamination of sewage sludge and amended soils by polybrominated diphenyl ethers based on meta-analysis". Kim et al., 2017
 - "Fate, Transport, and Biodegradations in the Environment and Envineered Systems". Khanal et al., 2006.

Non-listed chemical

Pharmaceuticals

70

. .

10

Pesticides

PFASs/ Surfactants

20

Metals /Inorganics

23

Hormones/steroids

19

Brominated flame retardants

43

Dioxins/ Furans

28

Organics

34

Antibiotics and antimicrobials

64

What about PFAS?

Section in our Response written by Dr. Linda Lee

Examples of Individual compounds*

> PFPeA (n=5)-PFHxA (n=6) PFHpA (n=7)

PFOA (n=8)
 PFNA (n=9)
 PFDA (n=10)
 PFUnA (n=11)

PFDoA (n=12)
 PFTrA (n=13)

n=4) (n=6)

(n=8) (n=10) PFPiA (n,m=4) PFPiA (n,m=6)

FPiA (n,m=8)

 $(CF_3 - O - C_3F_6 - O - CHFCF_2 - COOH) - {}_{3}F_{7} - CF(CF_3) - COOH)$

-O-C₂F₄-O-CF₂-COOH) -C₆F₁₂-O-C₂F₄-SO₃H)

What are PFAS - Per and Polyfluoroalkyl substances?

Currently > 4,800 PFAS produced

New estimate: >7000* PFAS (*Johnson et al., 2020)

- All have a perfluoroalkyl chain of varying length
- Numerous su differentiating
- Each subclass different perfl
- An individual isomers (line branching)

OIGP report mentioned PFAS and PFOA once in a single sentence

PFAS are the Biggest <u>Current</u> Concern Nationally/Globally and an area of growing data

• Each class either does not degrade or degrades to another subclass

Figure modified from Wang et al., 2017, ES&T, 51:2508-2518

n=4.R=N(C,H,)H) (n=4,R=N(CH3)C2H4OH) (n=8,R=N(CH (n=4,R=N(C2H6)C2H4OH) O EtFOSE (n=8,R=N(C2H2)C2H4OH) SAMPAP {[C₈F₁₇SO₂N(C₂H₆)C₂H₄O]₂-PO₂H} PFAA o 100s of others precursors 6:2 FTOH (n=6,R=OH) fluorotelomer-based 0 8:2 FTOH (n=8.R=OH) 0 10:2 FTOH (n=10,R=OH) substances 0 12:2 FTOH (n=12,R=OH) 0 6:2 diPAP [(C6F13C2H4O)2-P O 8-2 diPAP polytetrafluoroethylene (PTFE) polyvinylidene fluoride (PVDF) fluoropolymers o fluorinated ethylene propylene (FEP) others perfluoroalkoxyl polymer (PFA) perfluoropolyethers (PFPEs)

Sub-classes of PFASs

PFAS in Biosolids: Challenges & Management Options

Linda S Lee

Agronomy

WEF Residuals & Biosolid Conference May 11, 2021

PFAS Content in 2019 Biosolids

	Biosolids (n=9) µg/kg	Maine Guidelines μg/kg
Total PFAS	160-450	
PFOA	3.3 - 26.6 (9.95)*	2.5
PFOS	5.2 – 127 (59.3)*	5.2
PFBS	9.9 – 131 (51.2)*	1900

^{*} Average

- Despite regional, size, property, and process differences among the utilities and biosolids, total PFAS concentrations fall within a relatively narrow concentration interval although specific PFAS vary over 1-2 orders of magnitude
- All would fail to meet one or more of Maine's criteria

Should we just ban PFAS-containing materials from land-application?

- > Banning land application places a heavy burden on public municipalities
- > Banning could lead to numerous unintended consequences
- Control sources contributing to PFAA levels in biosolids (e.g., pretreatment of influent from industry or landfills with *high* PFAA levels)
- Focus on regulating nonessential uses of PFAS & ban them from use in food packaging, carpets, etc. This will go a long way to reducing PFAS loads in municipal wastes including biosolids.

PFAS Biosolids Resources

Excellent resources:

North East Biosolids and Residuals Assoc. (NEBRA) https://www.nebiosolids.org/pfas-biosolids

Dr. Linda Lee, Purdue University

US Composting Council, https://www.compostingcouncil.org

Environmental Sources

PFAS are **Ubiquitous** in the Environment

Contents lists available at ScienceDirect

Chemosphere

journal homepage: www.elsevier.com/locate/chemosphere

A North American and global survey of perfluoroalkyl substances in surface soils: Distribution patterns and mode of occurrence

Keegan Rankin ^{a, 1}, Scott A. Mabury ^a, Thomas M. Jenkins ^b, John W. Washington ^{c, *}

- ^a Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
- b Senior Environmental Employment Program, United States Environmental Protection Agency, 960 College Station Road, Athens, 30605, Georgia
- ^c Ecosystems Research Division, National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, 960 College Station Road, Athens, 30605, Georgia
- Quantifiable concentrations of PFASs were detected in all pristine soils sampled from around the world
- PFOA and PFOS were most common

Wastewater Treatment Plants

Available at www.sciencedirect.com

journal homepage: www.elsevier.com/locate/watres

Evaluation of the fate of perfluoroalkyl compounds in wastewater treatment plants

Rui Guo^a, Won-Jin Sim^a, Eung-Sun Lee^a, Ji-Hyun Lee^{a,b}, Jeong-Eun Oh^{a,*}

bKorea Testing & Research Institute, Ulsan, Republic of Korea

Contents lists available at ScienceDirect

Water Research

journal homepage: www.elsevier.com/locate/watres

Poly- and perfluoroalkyl substances in wastewater: Significance of unknown precursors, manufacturing shifts, and likely AFFF impacts

Erika F. Houtz a, b, *, Rebecca Sutton c, June-Soo Park a, Margaret Sedlak c

^a Environmental Analysis Laboratory, Department of Civil and Environmental Engineering, Pusan National University, Busan, Republic of Korea

^a Environmental Chemistry Laboratory, California Department of Toxic Substances Control, Berkeley, CA 94710, USA

^b Sequoia Foundation, La Jolla, CA 92037, USA

c San Francisco Estuary Institute, Richmond, CA 94804, USA

Wastewater Impacted by Aqueous Film Forming Foam (AFFF)

Emergency Response

Hangars and Buildings

Waste Water Management

Equipment Maintenance and Testing

Summary and Conclusions

- ➤ Extensive data and risk assessment for many of the chemicals in the OIG report
- ➤ Lack of consideration by OIG of low concentration of chemicals of concern in biosolids OIG report.

 Low concentration of most chemicals causes little exposure and risk. Emphasis on "hazard" designation rather than risk for chemicals of concern by OIG.
- ➤ Most chemicals in biosolids were (i) below natural soil levels, (ii) non toxic and pose no risk, (iii) result in minimal exposure and risk, or (iv) will not persist in the environment

U.S. EPA response to OIG and Ongoing Risk Assessment by U.S. EPA for "Unassessed" Chemicals in OIG Report

https://www.epa.gov/biosolids/office-inspector-general-reports-biosolids-program

Dr. Elizabeth Resek, Biosolids Lead
Health and Ecological Criteria Division
Office of Science and Technology
EPA/Office of Water

OIG Nov 2018 Report

THE WORLD NEWS

lince 1883

LYMBER ONE SOURCE FOR HEADLINES

PRESIDENT DECLARES A STATE OF EMERGENCY

RELIGIOUS LEADERS URGE ALL TO LOOK UP CHICKEN LITTLE TO BE FOR

Climate Change

Beneficial Use of Biosolids is a Solution for "The Grand Challenges"

- > Food production / security
- > Clean water
- > Contaminant Remediation
- > Climate Regulation (resilience)
- > Waste Reuse

The answer is biosolids

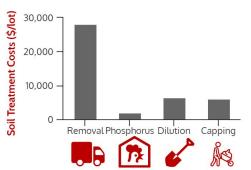
"Carnac The Magnificent"

W4170 and OSU

Biosolids and Soil Health Research, Teaching and Extension

Restoring Urban Soils to Restore Communities

Investing in cities with low-cost soil testing and treatment



Reusing Vacant Land While Protecting Human Health

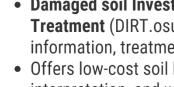
Lead in Cleveland Community Garden Soils

Although most vacant lots have little or no contamination, public fears can prevent lot reuse. Low-cost testing can increase reuse of sites with little or no contamination. Treatments like phosphorus fertilization, dilution, and capping protect public health on moderately contaminated sites, reuse locally-available materials, and reduce costs of traditional remove and replace remediation.

SUMMARY

Reusing vacant urban lots for food production, green space, and wildlife habitat brings humans and wildlife into contact with potentially-contaminated soil. Soil testing, inexpensive remediation practices, and education are needed to protect human and ecological health when revitalizing vacant urban lots.

Soil Environmental **Chemistry Group**



 Risk-based environmental chemistry of organic and inorganic soil pollutants

- Soil chemical contaminant speciation
- Human and ecological in vitro bioaccessibility assays

Research

- Bioavailability-based contaminant remediation
- Beneficial reuse of industrial and municipal byproducts
- Soil, Water, and Environmental Lab (SWEL) is a service lab in the School of Environment and Natural Resources at The Ohio State University
- Contracts with universities, industry, and government
- Research-quality data produced by professional staff from several labs specializing in water quality and soil health, contaminants, and biology.
- Comprehensive assessment of human and ecological **Testing Services** contaminant exposure

• Damaged soil Investigation, Restoration, and Treatment (DIRT.osu.edu) provides testing information, treatment options, and soil lead education

 Offers low-cost soil heavy metal screening, testing interpretation, and workshops

 Students help assess vacant urban lots for remediation through City of Columbus partnership https://dirt.osu.edu

https://swel.osu.edu/home

The next big event in west / central Ohio and east Indiana?

17 yr Brood X cicadas

Thank you for your attention More information?

Nick Basta
Soil and Water Environmental Laboratory
(SWEL)
basta.4@osu.edu

