

Rolling the Dice

Using the Monte Carlo Method to Optimize Solids Management

Kevin Campanella, Burgess & Niple

View Presentation on Your Mobile Device

www.burgessniple.com/event/2018/owea

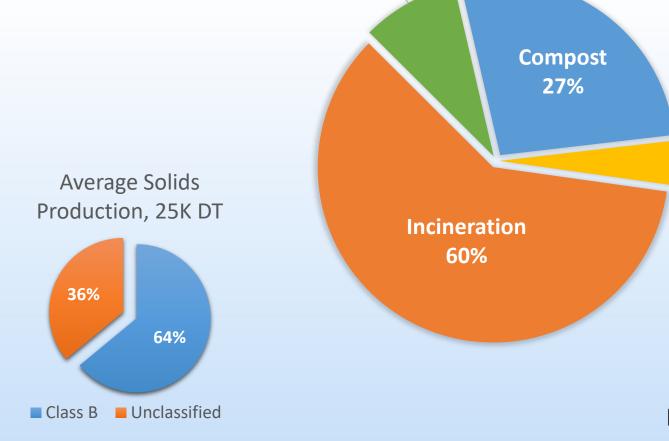
Acknowledgments

Project Team

- City of Columbus:
 - Patrick Eiden
 - Josh Lutz
 - Todd Krenelka
 - Heather Curtis
 - Brandon Fox
- Black and Veatch: Bob O'Bryan
- Burgess & Niple: Tanja Kontautaite

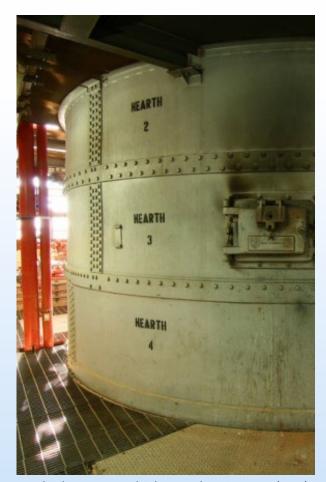
What if you want to...

- Model risks of a project or program?
 - Multiple inputs
 - Inputs are complex and variable
 - Potential outcomes are broad ranging


Monte Carlo Analysis

- Monte Carlo Analysis Method
 - Can model many complex input variables
 - Can model "what if" scenarios quickly
 - Typical Monte Carlo analysis involve 5,000+ simulations
 - Produces an understanding of each possible outcome and its likelihood
 - Results help optimize investments and risks

Liquid LA

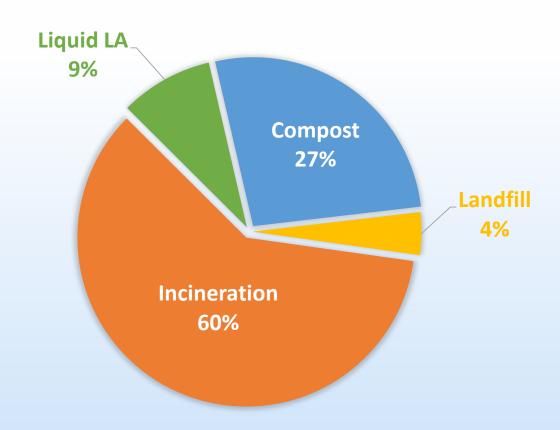

9%

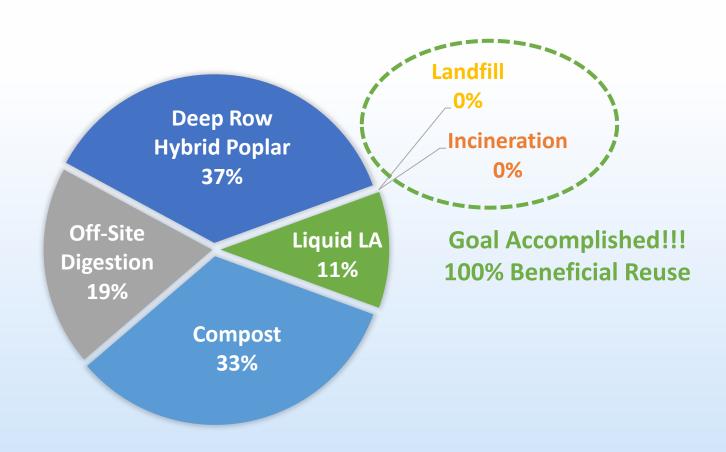
BURGESS & NIPLE

Landfill

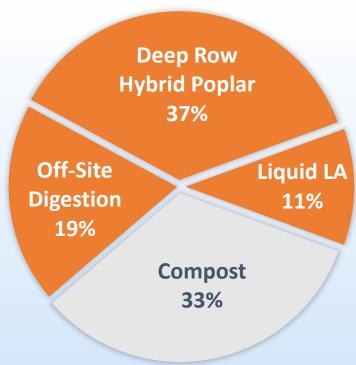
4%

MACT Compliance

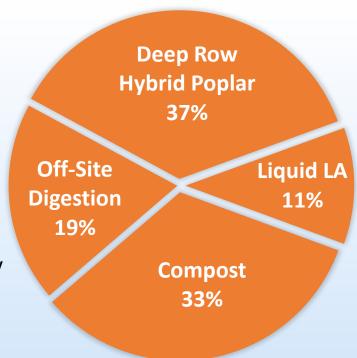



Southerly WWTP Multiple Hearth Incinerator (MHI)

- 2010 Title 5 Maximum Achievable Control Technology Standards (MACT)
- MHI Condition Assessment and BCE
 - Initial Goal: Determine what incinerator repairs are necessary at both plants.
 - Revised Goal: Determine the optimal number of incinerators to improve based on available capacity of ALL management outlets.
 - Comprehensive system approach.


Findings

 Incineration improvements not necessary with an expanded beneficial reuse program.


Heavy Reliance on Private Contractors for Solids Management.

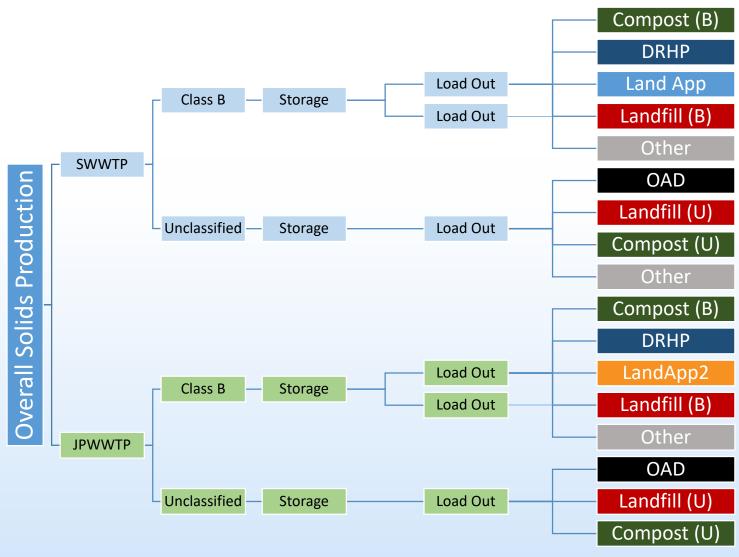
Heavy Reliance on Private Contractors for Solids Management.

... a management outlet goes out of business?

... a regulatory change affects the City's ability to direct solids to a given outlet?

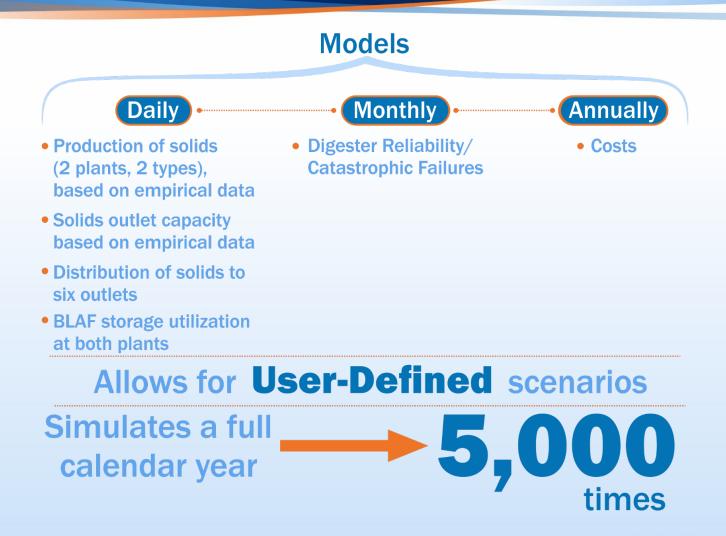
What if...

... an unexpected digestion outage creates a large short-term increase in unclassified solids production?


... an economic driver changes the reliability or capacity of a given management outlet?

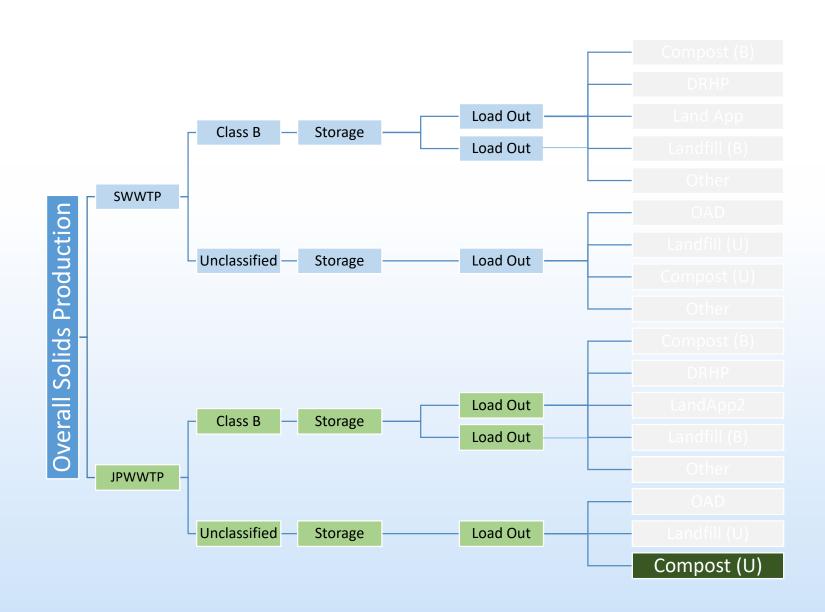
What are the range of possible outcomes for that scenario? Can the management system "weather the storm"?

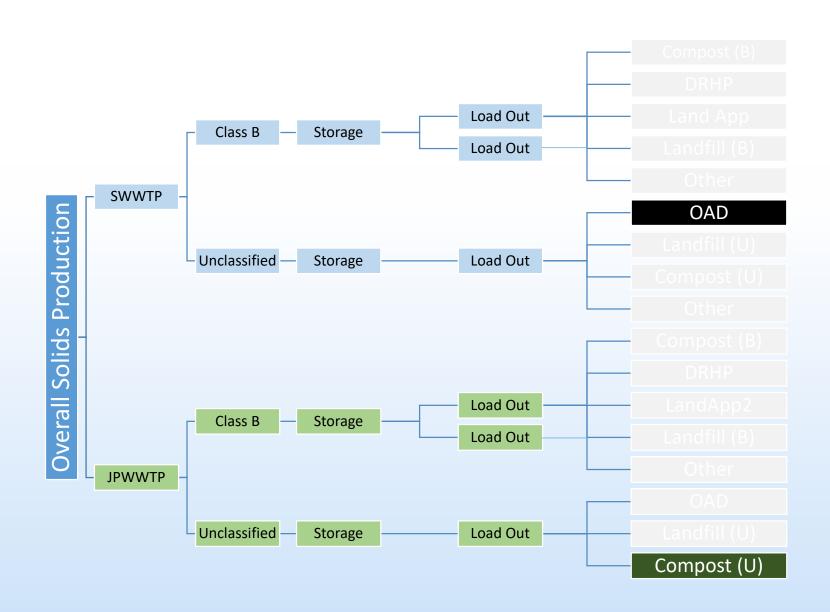
Modeling Solids Handling

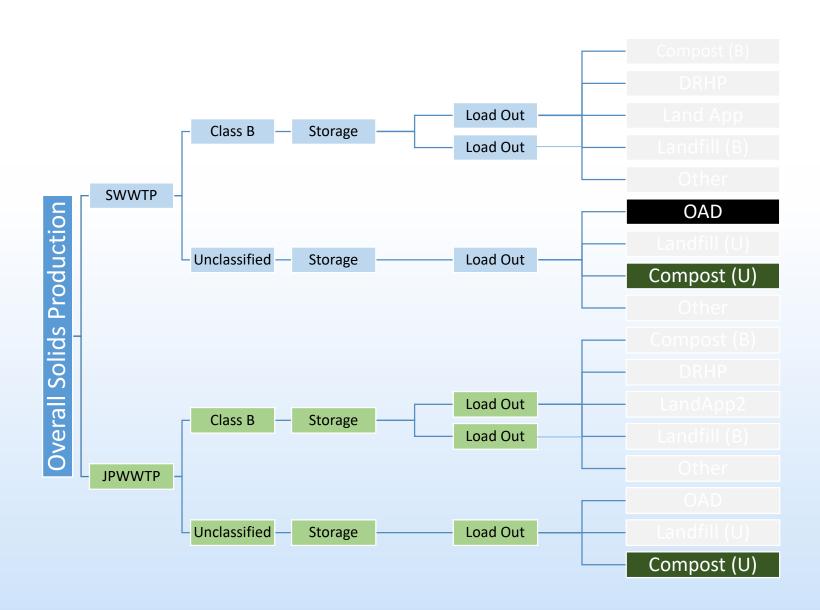


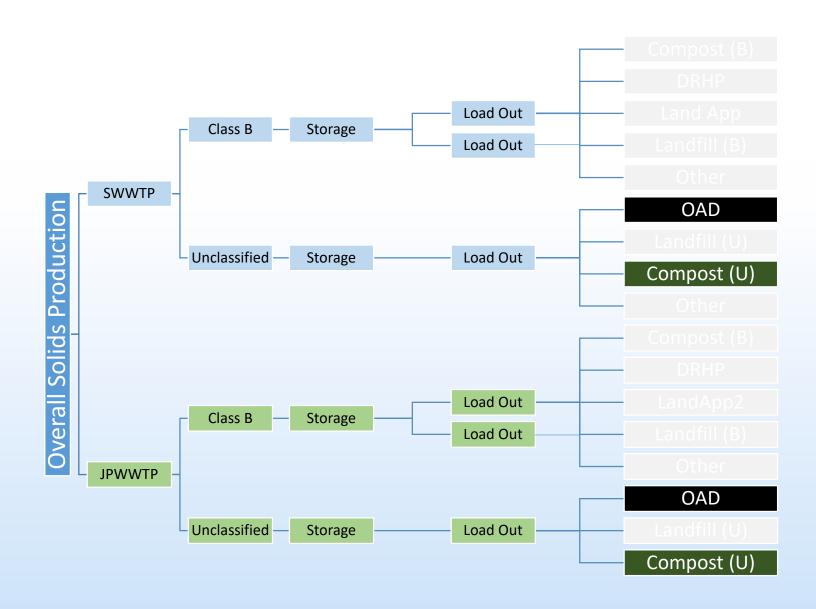
Key:
DRHP = Deep Row Hybrid Poplar Mine Reclamation
OAD = Offsite Anaerobic Digestion
Land App = Land Application

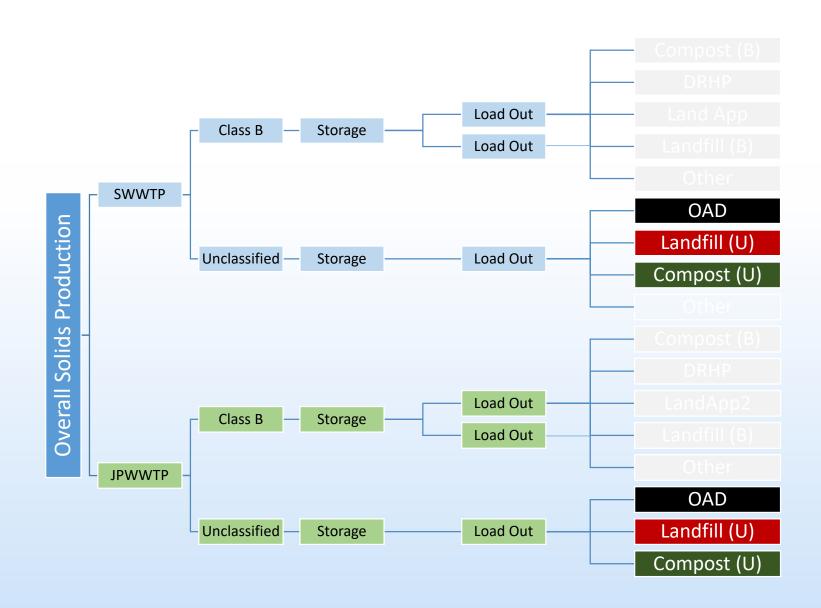
Monte Carlo Model Overview

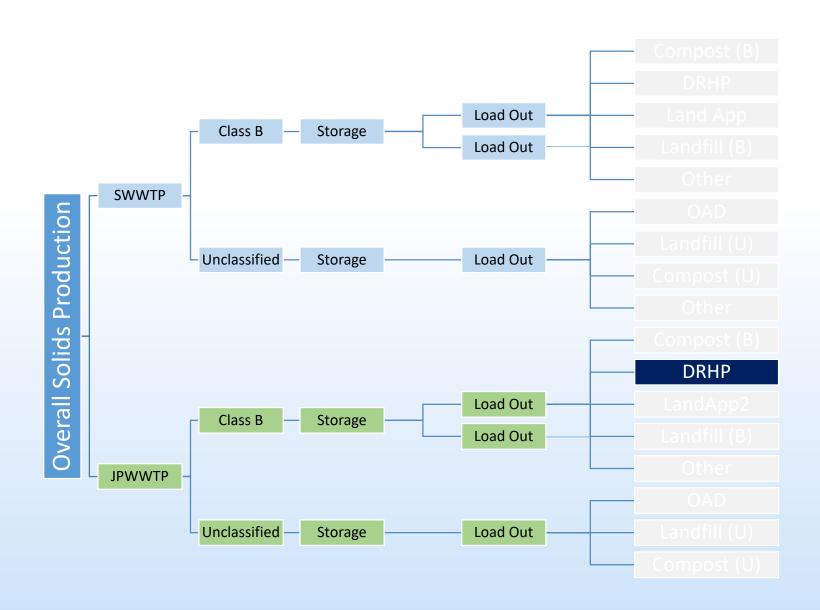

Solids Planning and Risk Evaluation (SPARE) Tool

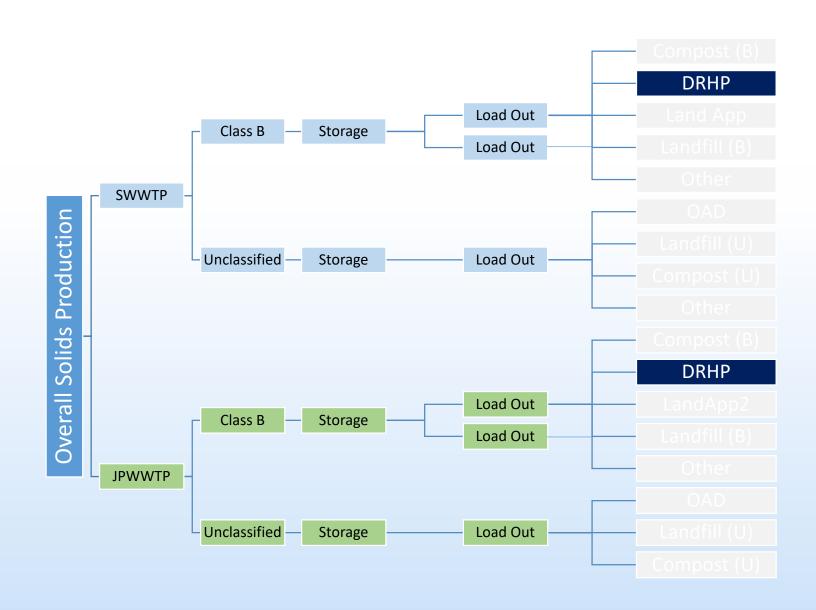

4	Α	В	С	D	Е	F	G	Н	I	J	K	L	M
1													
2						Baseline Solids Production Data (assuming Digesters operational)							Adjusted Daily
3	Day of the week	Count of Days	Month	Week	Date	Overall Solids Production (DT)	JP Class B Solids Productio n (DT)	SWWTP Class B Solids Production (DT)	JP Unclassified Solids Production (DT)	SWWTP Unclassified Solids Production (DT)	JP Digester s Out of Service for (*) More Days	SWWTP Digester s Out of Service for (*) More Days	JP Class B Production (DT) adjusted for Digester Outage
4	Sunday	1	1	1	1/1/2017	65.95	25.06	23.96	0	16.93	0	0	25.06
5	Monday	2	1	1	1/2/2017	70.98	18.25	22.18	0	30.55	0	0	18.25
6	Tuesday	3	1	1	1/3/2017	56.99	14.13	22.68	0	20.18	0	0	14.13
7	Wednesday	4	1	1	1/4/2017	56.55	16.70	20.79	0	19.06	0	0	16.70
8	Thursday	5	1	1	1/5/2017	77.60	30.22	23.36	0	24.02	0	0	30.22
9	Friday	6	1	1	1/6/2017	61.88	31.46	11.18	0	19.23	0	0	31.46
10	Saturday	7	1	1	1/7/2017	75.56	24.22	33.86	0	17.49	0	0	24.22
11	Sunday	8	1	2	1/8/2017	74.07	24.28	28.32	0	21.47	0	0	24.28
12	Monday	9	1	2	1/9/2017	68.70	30.75	20.46	0	17.49	0	0	30.75
13	Tuesday	10	1	2	1/10/2017	61.65	18.45	22.96	0	20.23	0	0	18.45
14	Wednesday	11	1	2	1/11/2017	76.43	31.92	20.79	0	23.73	0	0	31.92
15	Thursday	12	1	2	1/12/2017	70.73	25.44	23.82	0	21.47	0	0	25.44
16	Friday	13	1	2	1/13/2017	72.83	27.63	24.98	0	20.23	0	0	27.63
17	Saturday	14	1	2	1/14/2017	57.34	19.86	20.00	0	17.49	0	0	19.86
18	Sunday	15	1	3	1/15/2017	74.95	31.17	28.68	0	15.11	0	0	31.17
19	Monday	16	1	3	1/16/2017	79.14	25.02	20.46	0	33.66	0	0	25.02
20	Tuesday	17	1	3	1/17/2017	69.63	19.93	17.72	0	31.98	0	0	19.93
21	Wednesday	18	1	3	1/18/2017	59.45	14.74	24.21	0	20.50	0	0	14.74
22	Thursday	19	1	3	1/19/2017	59.52	18.03	21.63	0	19.87	0	0	18.03


Modeling Undigested (Unclassified) Solids Handling

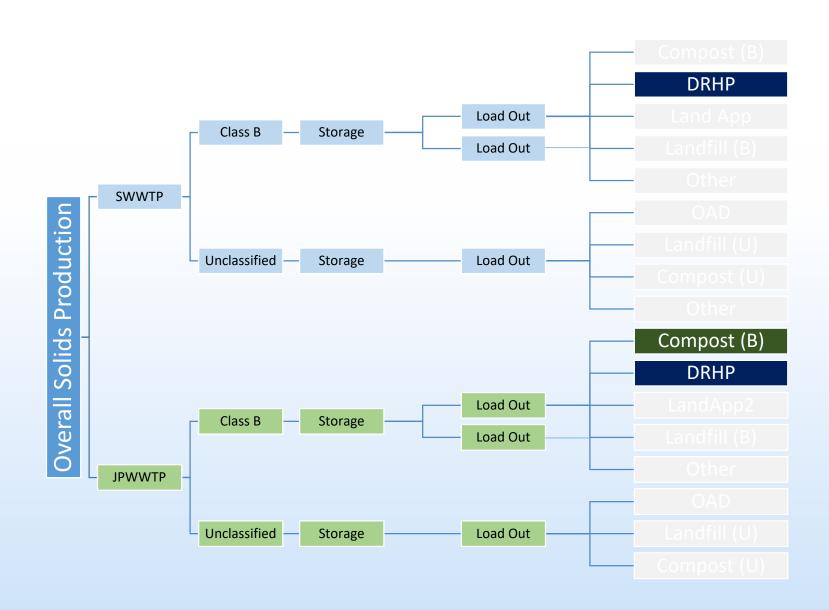


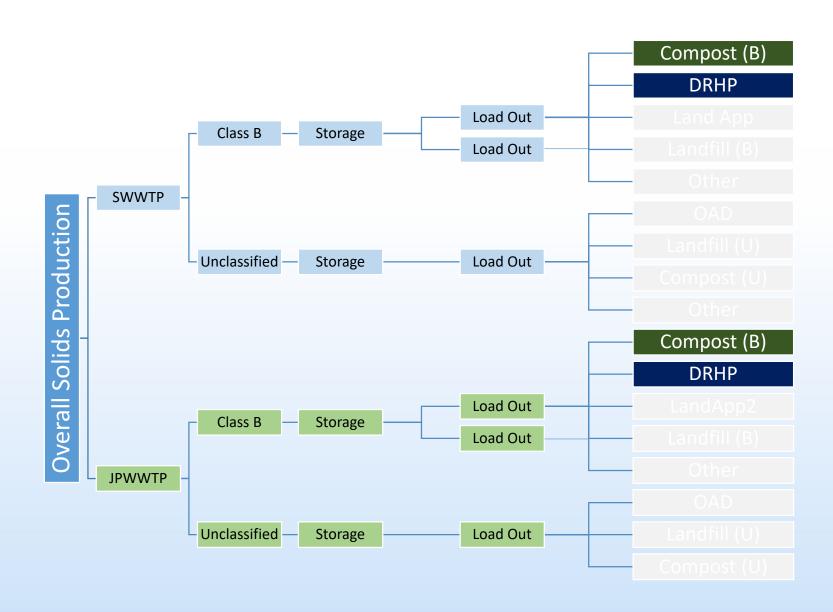






Modeling Digested (Class B) Solids Handling


Class B Solids to DRHP

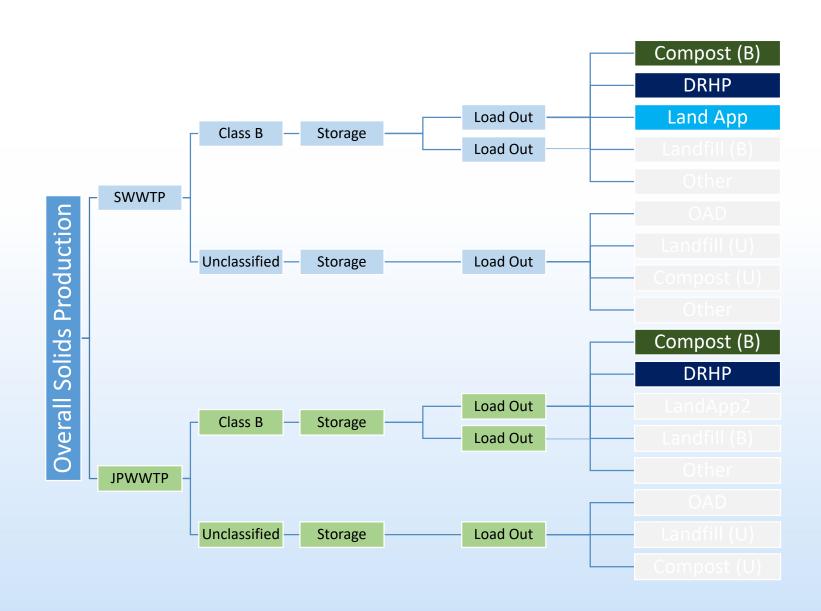

Baseline Circumstances

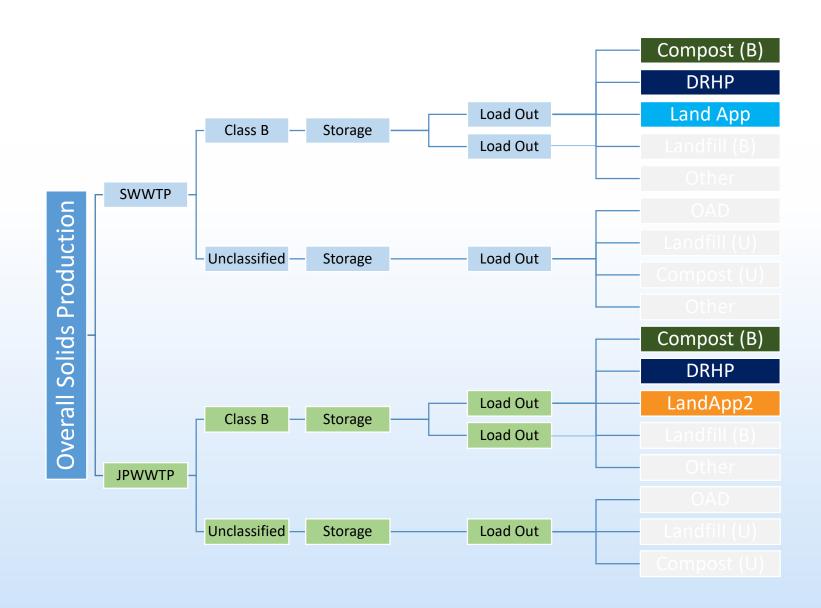
DRHP capacity dedicated to JP Class B first

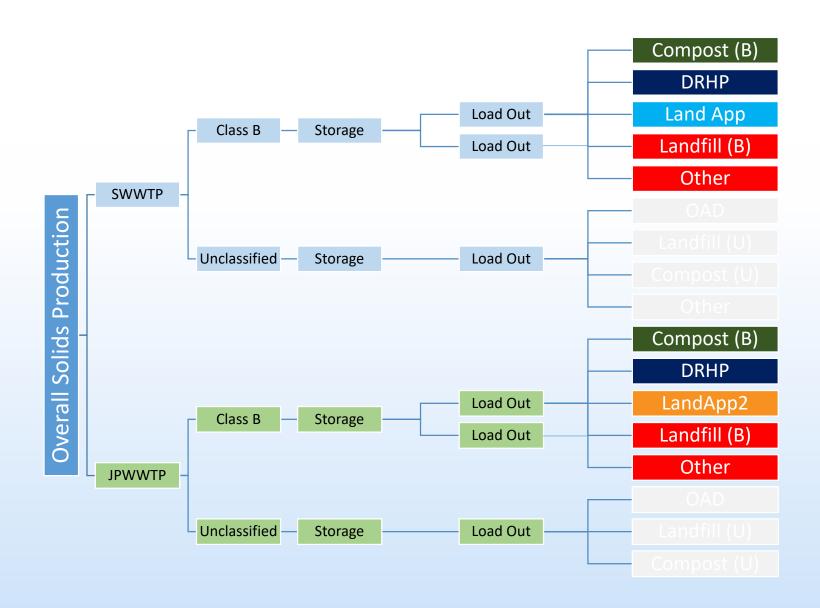
If available storage at SWWTP < JP

DRHP capacity is shared equally

Class B Solids to Compost


Baseline Circumstances


Compost capacity dedicated to JP


Class B first

If available storage at SWWTP < JP

Compost capacity dedicated to SWWTP Class B first

Modeling Methods

Conventional Static Design Scenarios vs. Monte Carlo

Static Design v. Monte Carlo?

- Static Modeling involves the user to define discrete scenarios
 - Average (Solids Production, Digester Reliability, Outlet Availability)
 - Worst Case / Worst Year

But what is a hypothetical worst year?

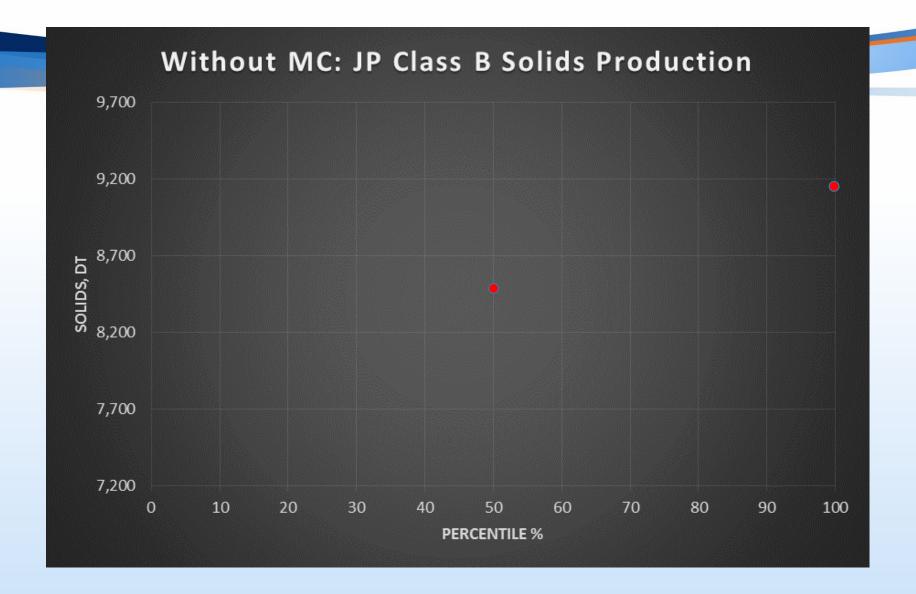
Defining the Worst Case

Solids production is high at both plants

> Digesters reliability is down

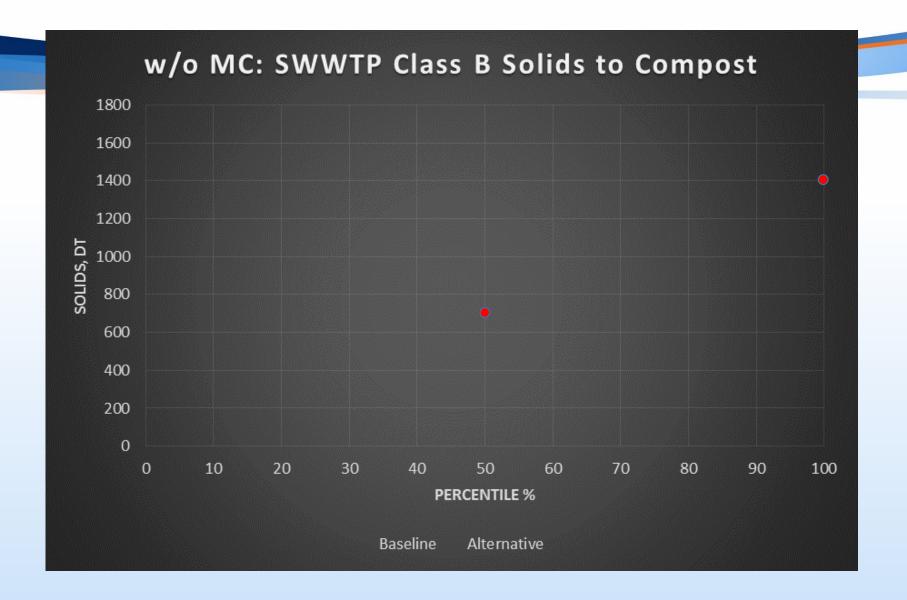
My primary outlet went out of business

Defining the Worst Case

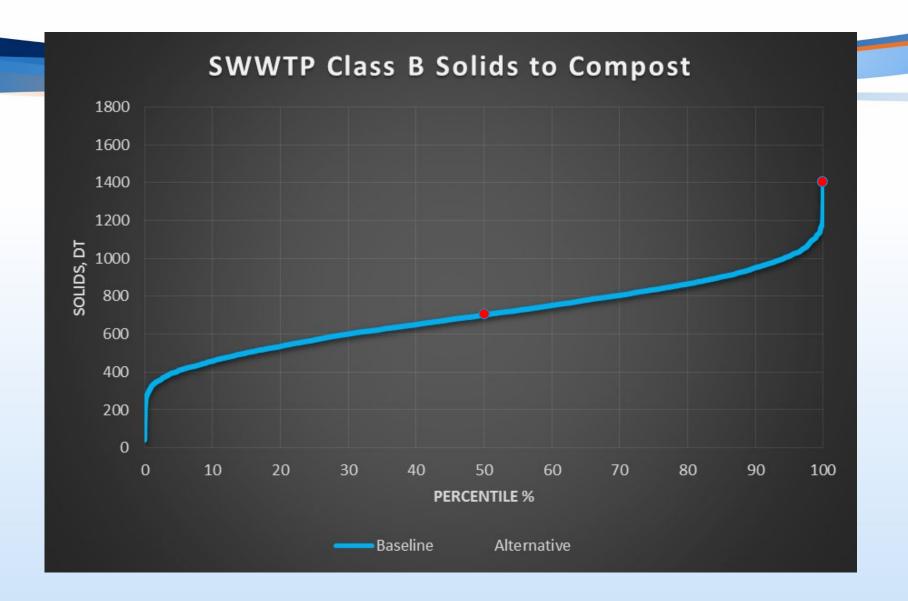

Why Apply Monte Carlo?

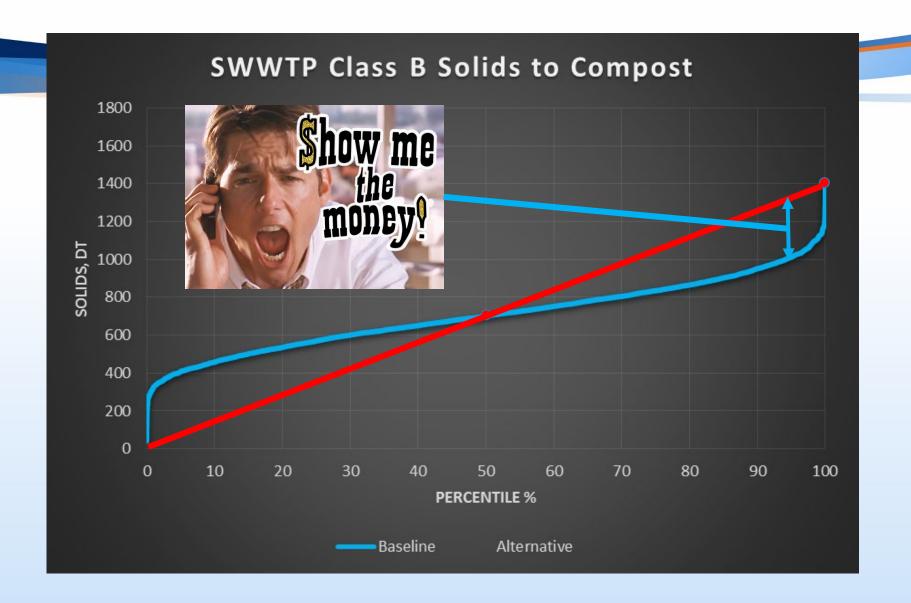
Some benefits of Monte Carlo

Monte Carlo not only answers these questions, it eliminates the need to ask the questions in the first place, saving time and money.






What About the Output?



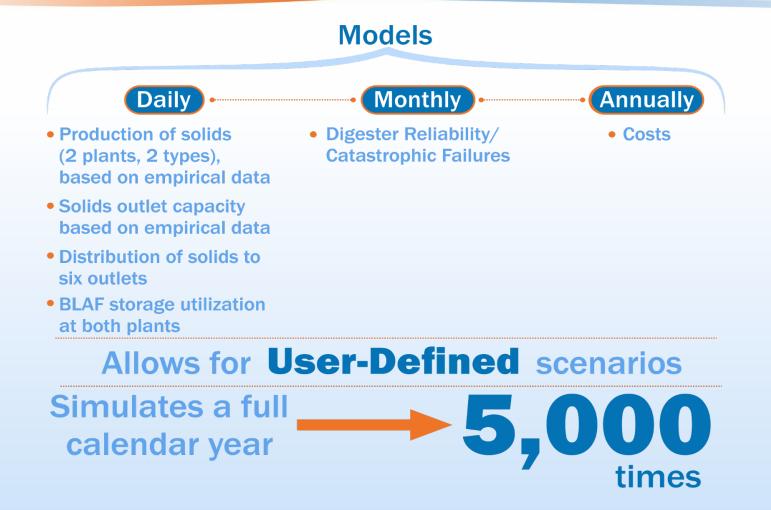
How Does Monte Carlo Work?

Rolling Two Dice

Knov	vn Dice Role Proba	abilities
Dice Roll	# of Ways to Roll	Probability
2	1	0.028
3	2	0.056
4	3	0.083
5	4	0.111
6	5	0.139
7	6	0.167
8	5	0.139
9	4	0.111
10	3	0.083
11	2	0.056
12	1	0.028

What if you didn't know?

Die Role Probabilities

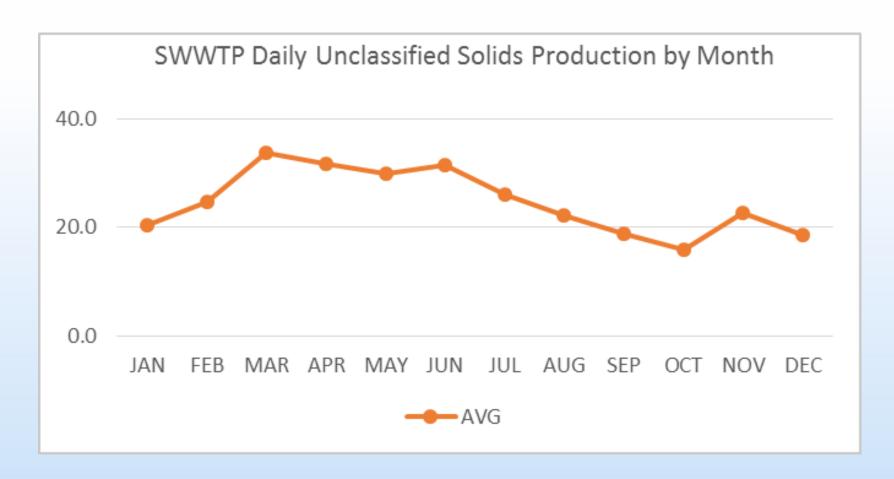

Die Roll	Probability
1	0.167
2	0.167
3	0.167
4	0.167
5	0.167
6	0.167

Mon	te Carlo - 1	000 Simula	tions
Iteration	Die 1	Die 2	Sum
1			0
2			0
3			0
4			0
5			0
6			0
7			0
8			0
9			0
10			0

	Monte (Carlo Result	:s
Dice Roll	Frequency	Probability	Deviation from Known
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			

F	G	Н	I	J	K	L	М	N	0	P	Q
Die Role	Probabilities		Mont	e Carlo - 1	000 Simula	tions		Monte Carlo R		Carlo Result	s
Die Roll	Probability		Iteration	Die 1	Die 2	Sum		Dice Roll	Frequency	Probability	Deviation from Known
1	0.167		1	3	6	9		2	31	0.031	0.32%
2	0.167		2	4	2	6		3	58	0.058	0.24%
3	0.167		3	5	1	6		4	68	0.068	-1.53%
4	0.167		4	2	1	3		5	123	0.123	1.19%
5	0.167		5	6	1	7		6	149	0.149	1.01%
6	0.167		6	5	4	9		7	152	0.152	-1.47%
			7	2	5	7		8	139	0.139	0.01%
			8	1	3	4		9	112	0.112	0.09%
Proba	oility Bins		9	6	5	11		10	66	0.066	-1.73%
0	1		10	2	2	4		11	66	0.066	1.04%
0.1666667	2		11	6	4	10		12	36	0.036	0.82%
0.3333333	3		12	4	2	6					
0.5	4		13	1	6	7					
0.6666667	5		14	6	3	9					
0.8333333	6		15	5	4	9					
1			16	6	1	7					
			17	4	2	6					
0.3902	7 random nur	mber1	18	1	6	7					
0.948976	9 random nur	mber2	19	1	3	4					
			20	1	2	3					
			21	1	1	2					
			22	3	4	7					
			23	1	1	2					
			24	1	3	4					
			25	1	4	5					
			26	1	5	6					
			27	3	2	5					
			28	6	2	8					
			29	4	5	9					
			30	6	5	11					
			31	6	1	7					
			32	5	5	10					
			33	5	1	6					

Monte Carlo Analysis Elements and Structure



Monte Carlo Analysis for DOSD Solids Disposal

Solids Production

Daily Solids Production Data 2013-2017

	Da	ily UN	ICLAS		ACKSO O solio		KE oducti	on - h	istori	ical				Daily	/ CLAS		ACKSC olids p			- histo	rical		
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.57	20.64	14.14	17.22	28.28	28.70	27.68	20.89	17.82	24.53	21.54	9.63
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.54	24.98	15.55	19.33	29.31	27.08	25.76	20.56	19.28	26.72	21.47	9.63
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	13.55	28.45	13.43	19.59	22.70	20.65	17.76	21.04	19.39	30.32	22.37	13.06
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17.65	25.96	15.40	22.57	17.88	18.98	22.28	20.29	23.87	26.73	21.22	16.63
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	21.67	16.75	6.01	22.58	16.93	23.23	18.30	20.13	27.28	42.76	21.41	15.23
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19.83	21.60	22.19	22.12	18.32	19.63	19.02	19.85	21.35	34.39	16.22	10.76
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	26.43	35.23	15.39	18.06	18.30	18.40	2.81	14.42	27.42	31.76	14.15	12.31
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.44	30.61	11.17	16.79	18.31	23.39	20.02	19.25	27.55	33.06	14.43	10.50
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	25.05	28.15	13.93	16.14	16.17	20.01	34.38	27.71	27.77	31.63	17.44	17.72
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	19.93	28.15	11.12	22.68	18.34	15.90	35.44	29.15	27.61	21.57	19.83	18.42
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	12.82	26.05	12.84	19.58	18.89	16.92	33.94	29.57	6.14	19.92	19.95	20.43
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	6.55	26.07	26.52	11.07	18.34		28.10			14.12	19.13	17.84
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14.21		26.36	13.21						2.46	9.24	18.04
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17.24		23.28	17.44	18.31				0.00	12.02	0.00	18.04
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.19			16.16	21.76		22.13	17.44	0.00	13.52	0.00	18.89
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.94			22.47			20.39			15.20	0.00	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14.68				26.06		12.41		0.00	18.61	4.65	_
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14.12	24.99	12.32	22.39			0.00		0.00	17.70		22.27
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.20	25.00	10.10	0.00		27.48	11.96	0.00	0.00	12.39	14.14	20.54
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23.00	14.88	12.56	22.54		27.23	17.95	8.71	0.00	19.56	28.26	19.69
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	23.74	10.10	16.01	19.39		37.09	19.06		0.00		19.10	8.99
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	14.74	9.65	23.85	17.58			19.85		0.00	16.01	12.61	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	18.12		24.78	38.49			14.84			16.52	8.81	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	30.25			17.88		0.00	10.65		24.00	18.31	14.91	20.12
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	26.26	13.31	17.18	17.37	19.43				19.80	17.61		13.64
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	20.36	14.88	37.44	14.47	22.04	0.00	28.62	19.98	20.86	18.09	24.17	6.87

Modeling Daily Solids Production using MC

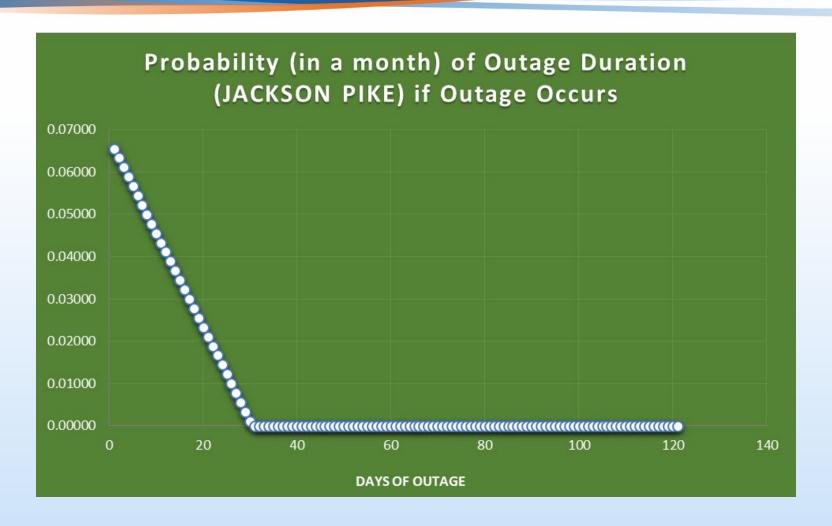
G4	4 🔻	: ×	· /	fx	=HLOOKU	P(\$C4,JPClas	sBProducti	on,RANDBE	TWEEN(2,187))	
4	Α	В	С	D	Е	F	G	Н	I	J
1										
2						Baseline Soli	ds Product	ion Data (ass	uming Digester	s operational)
3	Day of the week	Count of Days	Month	Week	Date	Overall Solids Production (DT)	JP Class B Solids Productio n (DT)	SWWTP Class B Solids Production (DT)	JP Unclassified Solids Production (DT)	SWWTP Unclassified Solids Production (DT)
4	Sunday	1	1	1	1/1/2017	73.50	25.31	28.32	0	19.87
5	Monday	2	- 1	4	1/2/2017	55.40		00.00		10.40
	IVIOIIUAY		1	1	1/2/2017	65.13	21.67	30.03	0	13.43
6	Tuesday	3	1	1	1/3/2017	72.09	20.97	29.00		22.12
6 7										
	Tuesday	3	1	1	1/3/2017	72.09	20.97	29.00	0	22.12
7	Tuesday Wednesday	3 4	1	1	1/3/2017 1/4/2017	72.09 53.59	20.97 15.95	29.00 24.21 22.68	0	22.12 13.43

Daily Solids Production Lookup Tables

	Da	nily UN	JCI AS		ACKSC		_	on - h	istori	ical					Daily	, CL AS		ACKSC			histo	rical		
Jan		Mar		May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		Jan	Feb	Mar	Apr	May	_	Jul	Aug	Sep	Oct	Nov	Dec
1	2	3	4	5	6	7	8	9	10	11	12		1	2	3	4	5	6	7	8	9	10	11	12
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		18.57	20.64	14.14	17.22	28.28	28.70	27.68	20.89	17.82	24.53	21.54	9.63
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		18.54	24.98	15.55	19.33	29.31	27.08	25.76	20.56	19.28	26.72	21.47	9.63
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		13.55	28.45	13.43	19.59	22.70	20.65	17.76	21.04	19.39	30.32	22.37	13.06
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		17.65	25.96	15.40	22.57	17.88	18.98	22.28	20.29	23.87	26.73	21.22	16.63
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		21.67	16.75	6.01	22.58	16.93	23.23	18.30	20.13	27.28	42.76	21.41	15.23
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		19.83	21.60	22.19	22.12	18.32	19.63	19.02	19.85	21.35	34.39	16.22	10.76
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		26.43	35.23	15.39	18.06	18.30	18.40	2.81	14.42	27.42	31.76	14.15	12.31
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		25.44	30.61	11.17	16.79	18.31	23.39	20.02	19.25	27.55	33.06	14.43	10.50
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		25.05	28.15	13.93	16.14	16.17	20.01	34.38	27.71	27.77	31.63	17.44	17.72
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		19.93	28.15	11.12	22.68	18.34	15.90	35.44	29.15	27.61	21.57	19.83	18.42
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		12.82	26.05	12.84	19.58	18.89	16.92	33.94	29.57	6.14	19.92	19.95	20.43
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		6.55	26.07	26.52	11.07	18.34	17.73	28.10	31.50	11.34	14.12	19.13	17.84
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		14.21	25.02	26.36	13.21	18.85	15.83	23.36	30.46	20.73	2.46	9.24	18.04
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		17.24	25.01	23.28	17.44	18.31	16.00	23.19	32.62	0.00	12.02	0.00	18.04
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		18.19	24.60	22.26	16.16	21.76		22.13		0.00		0.00	18.89
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		18.94		23.26	22.47	28.18		20.39		0.00		0.00	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		14.68		22.25		26.06		12.41		0.00	18.61	4.65	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		14.12	24.99	12.32	22.39		19.47	0.00	0.00	0.00	17.70		22.27
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0			25.00	10.10	0.00		27.48	11.96	0.00	0.00		14.14	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		23.00	14.88	12.56			27.23		8.71	0.00			
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-	23.74	10.10	16.01	19.39		37.09	19.06		0.00		19.10	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		14.74			17.58		44.21			0.00	16.01	12.61	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		18.12		24.78			61.37	14.84		18.28	16.52	8.81	12122
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	-	30.25		20.36						24.00	18.31	14.91	
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0		26.26	13.31	17.18	17.37	19.43		31.76		19.80			_
0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	[:	20.36	14.88	37.44	14.47	22.04	0.00	28.62	19.98	20.86	18.09	24.17	6.87

Digestion

Why Model Digestion?



10 DT Unclassified \rightarrow Digestion \rightarrow 6 DT Class B

User Inputs

Days to recover from digester failures (max)	30
Solids reduction	40%
Avg. Duration Between	26
Failures	36

Assumptions for Digester Outage Probabilities

Probability Table for Digester Outages

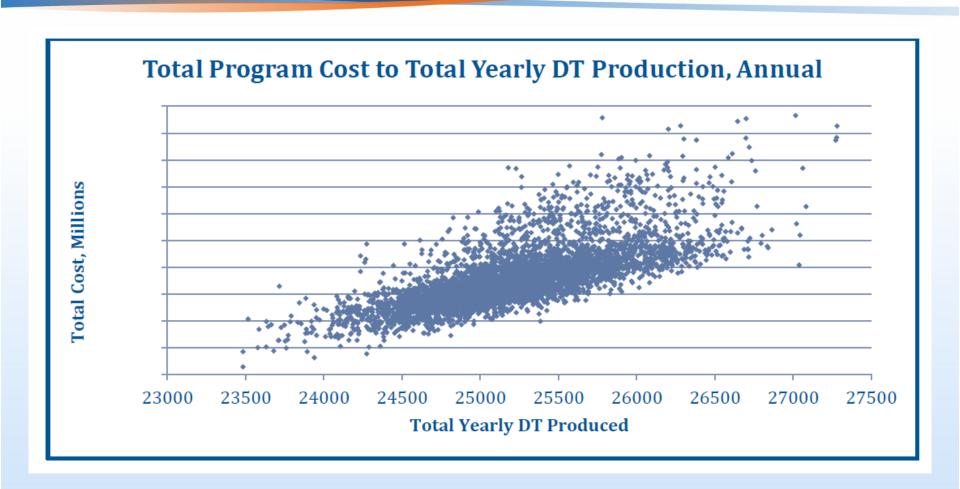
Mothly Probability Bin	x = number of days of outage	y - likelihood of duration (given an outage)	Cumulative Probability of Duration (if outage)
0	0		0.000
0.97222	1	0.06556	0.066
0.97404	2	0.06333	0.129
0.97580	3	0.06111	0.190
0.97750	4	0.05889	0.249
0.97914	5	0.05667	0.306
0.98071	6	0.05444	0.360
0.98222	7	0.05222	0.412
0.98367	8	0.05000	0.462
0.98506	9	0.04778	0.510
0.98639	10	0.04556	0.556
0.98765	11	0.04333	0.599
0.98886	12	0.04111	0.640
0.99000	13	0.03889	0.679

Sample Results for Digester Outages

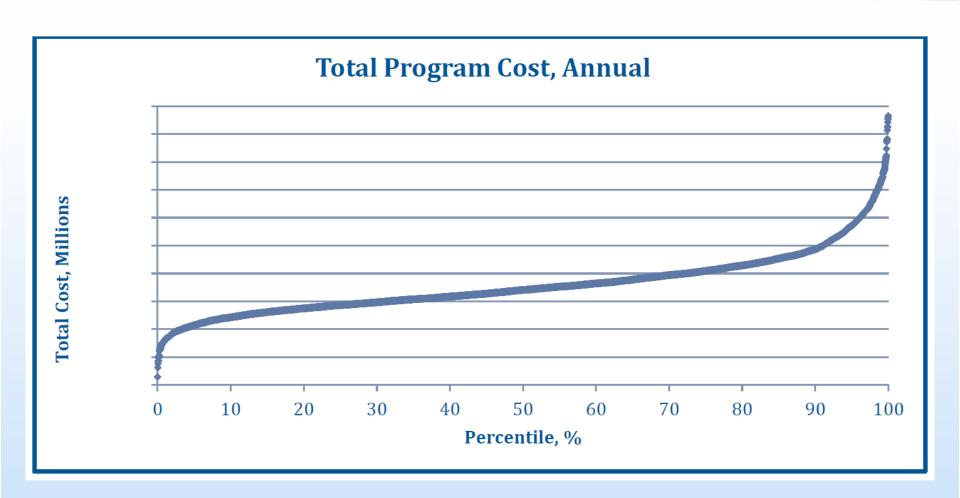
	Failures (day	ys/ month)	
	Month	Jackson Pike	Southerly
January	1	0	0
February	2	0	0
March	3	0	0
April	4	0	0
May	5	0	0
June	6	0	0
July	7	0	0
August	8	0	5
September	9	0	0
October	10	0	0
November	11	0	0
December	12	0	0

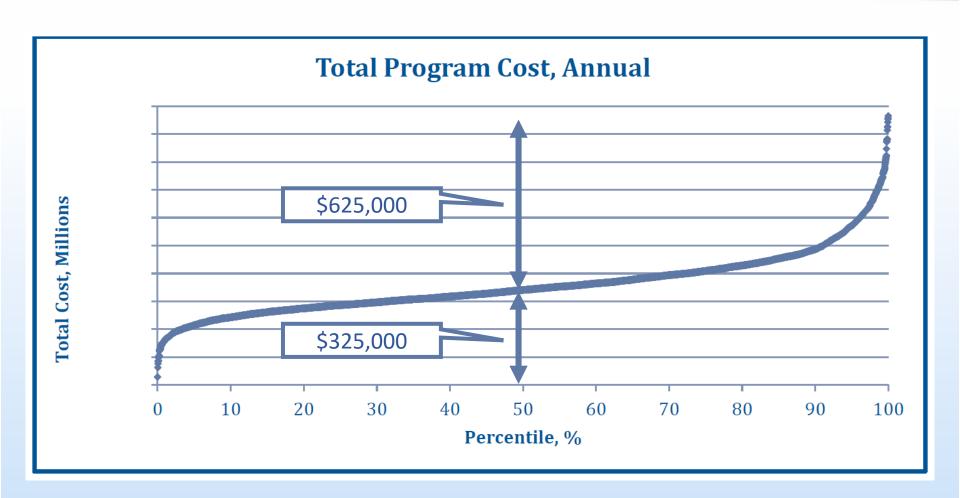
Land Application Weather Forecasting

Forecasting Land App Spreadable Days


		Likelihoods (of Spreadable D	ays (Wet year	to Dry Year)	
		Probability			Annual Disposal	Incremental
		Bin	Spring Days	Fall Days	Capacity (DT)	Probability
VERY WET	0	0	12	20	5990	5%
WET-WET	1	0.05000	16	25	7675	10%
DRY-WET	2	0.15000	24	25	9173	20%
AVG-AVG	3	0.35000	20	30	9360	30%
WET-DRY	4	0.65000	16	35	9547	20%
DRY-DRY	5	0.85000	24	35	11045	10%
VERY DRY	6	0.95000	30	45	14040	5%
	7	1.00000				
		ADAPTED fro	m DOSD Evalua	tion		
				er between 0 ar	nd 1 (15 decimals)	
		Spring Days	Fall Days			
		16	35			

Modeling Costs

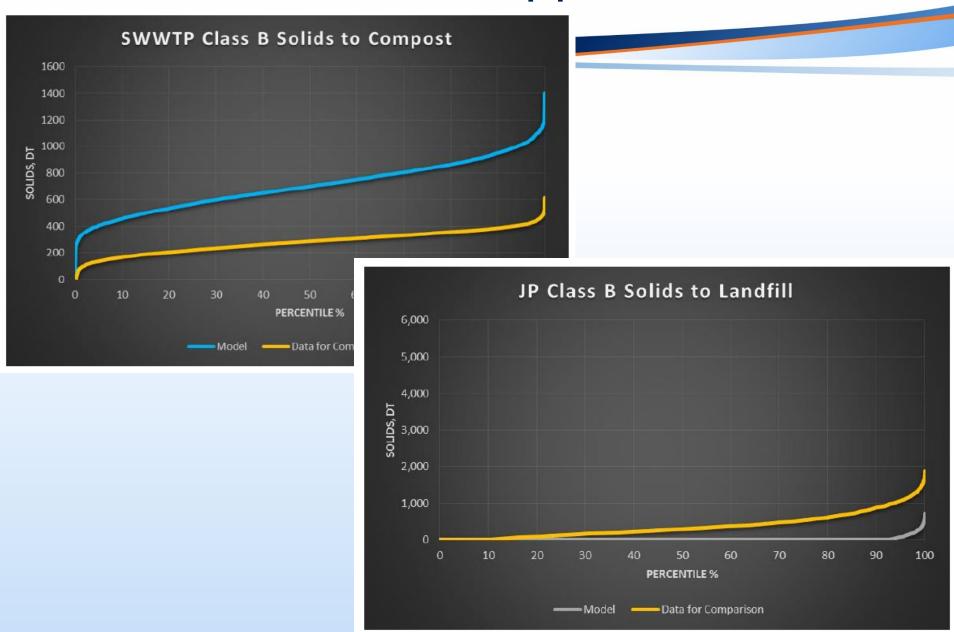


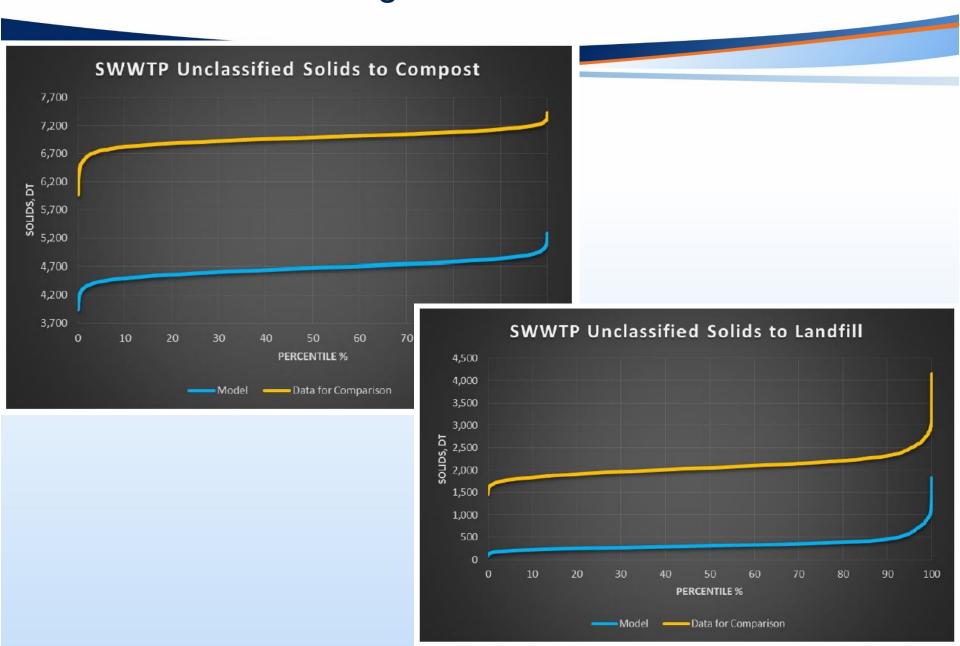

Cost per DT Solids Produced

Cost Probability

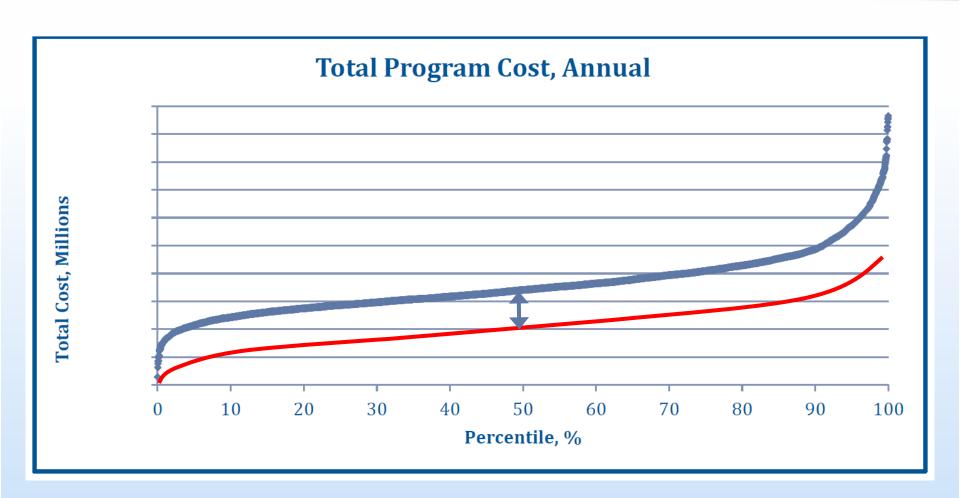
Cost Probability

Other Benefits of Monte Carlo




What if.....? Monte Carlo Knows...

- What if I lose an outlet?
- Should I expand my portfolio to mitigate that risk?
- Should I increase staff at Compost in the summer?
- What if an outlet's capacity increases by 15%?
- What if digester reliability improves by 50%?
- What are my long-term costs if I design storage for the 90th percentile solids production?...80th percentile?


What if DRHP Disappeared?

What if Anaerobic Digestion contract is not renewed?

Cost Probability

Conclusion

- Monte Carlo provide benefits with
 - Model diversity of scenarios, not discrete conditions
 - Understand issues involving many complex variables
 - Answer a wide range of "what if" scenarios quickly
 - Manage risks and optimize costs
- Other applications optimizing investments
 - Sizing pipelines, treatment systems, storage facilities

Questions?

Kevin Campanella, Burgess & Niple, Inc.

Kevin.Campanella@burgessniple.com

614.459.2050

