

Sustainable Approaches to Water Treatment Residuals Management

Biosolids Workshop – December 6, 2018

Bret M. Casey, PE, BCEE

Paradigm Shift: Biosolids

Old Practices

New Practices

Ohio Mulch – Innovative Deep Row Hybrid Poplar (DRHP) Biomass Farming

Paradigm Shift: Water Treatment Residuals (WTRs)

Start with the Solution in Mind

WTRs Current Approach

Residuals Characterization Critical to Evaluating Options

What are Water Treatment Plant Residuals?

- Coagulant solids (alum, ferric) can include treatment additives like polymer, PAC.
- Lime softening solids mostly CaCO₃, can be combined with coagulant in surface water plants.
- Spent filter backwash water high flow, low solids. Similar for gravity filters, low pressure membranes
- Regenerant brine from ion exchange IX softening or nitrate removal. High TDS
- High pressure membrane filtration reject softening membranes removing dissolved compounds. High TDS

Residuals Handling is Getting More Complicated

What Have Water Plants Done Historically?

Coagulant – generally not considered for beneficial use

- Discharged to sewer, dewatered/landfilled
- Costs are increasing, regulations more stringent, negative impacts to WWTPs

How Much Does a Typical Water Plant Produce?

- Typical coagulation solids
 - 400-800 lbs ds/mgd
- Typical softening solids for surface water
 - 1500-3000 lbs ds/mgd
- Typical softening solids for groundwater
 - 5000 lbs ds/mgd

Columbus - WTRs ~228 tons ds/day (34 tons alum, 194 tons lime)

Columbus – Biosolids ~60 tons ds/day

Affected by turbidity, hardness (lime), enhanced coagulation for additional TOC removal

What do other lime softening utilities do in Ohio?

		Capacity			Land		
City	Plant	MGD	Dewater	Quarry	Арр	Landfill	Recalcination
Cincinnati, OH	Bolton - GW	40	lagoon		х		
Columbus, OH	Hap Cremean - SW	125		X			
	Dublin Road - SW	80		X			
	Parsons Ave -GW	50	lagoon	X			
Dayton, OH	Ottawa -GW	96	Centrifuge		х		X
	Miami -GW	96	Centrifuge		х		x
Del-Co Water	OLE - SW	19.2 (28.8)	lagoon		х		
	TFM -SW	4	lagoon		х		
	RES - SW	6.6	lagoon		х		
	TES - GW	6	lagoon		х		
Massillon, OH	Aqua OH - GW	15	P&F		х		
Toledo <i>,</i> OH	Collins Park -SW	120	P&F		х		

So Can We Reduce/Eliminate Lime Softening Residuals?

- Stop softening
 - Impacts to residential/industrial customers
 - Likely cause increase in home softeners TDS discharge to sewers will increase
- Switch to caustic softening
 - Significant reduction in solids
 - Increased cost, increased sodium in finished water
- Ion exchange softening
 - Negative impacts to water quality, high TDS waste stream
- Membrane softening
 - Problematic disposal of high TDS waste stream

Considerations for Discharge to WRRFs

- Disposal to sanitary sewer / removal through primary clarifiers
 - Chemically enhanced primary treatment (P removal)
 - CEPT may result in diversion of carbon from BNR
 - Increased primary solids
 - Potential toxicity / inhibition to activated sludge biology
 - Inerts can consume secondary capacity if no PC
- Digestion considerations
 - Phosphorus speciation weighted toward precipitate solids
 - Reduction in VSS destruction because of inerts
 - Potential reduction in sulfide generation

Beneficial Use of WTRs

WTRs Viewed as a Resource

Beneficial Use of Water Treatment Residuals

Water Treatment Plants

Filter sediments from drinking water

Generate 2 million tons WTRs DAILY (U.S.)

Beneficial Use of a RESOURCE or Disposal of a WASTE?

What is WTR? Silica-based, alum, ferric, lime, organic matter...soil substitute and Pbinder

Manufacturing Markets	Landscaping/Restoration	Other Alternatives
Brick manufacturing	Stormwater BMPs	Agricultural land application
Cement manufacturing	Wetland/Stream/Floodplain	Phosphorus (P) removal structures (e.g. Phrog)
Topsoil blending	Dirt & Gravel Road (fill)	Blending with biosolids to reduce P availability
Composting	Landfill alternative daily cover	Recalcination, Flue gas de-S

Beneficial Use Challenges

- Markets not as fully developed compared to biosolids.
- Phosphorus control genuine opportunity, but still emerging.
- Dewatering technologies for coagulant difficult to achieve high solids concentrations. Trucking costs for hauling dewatered residuals drive costs.
- Polymer use for dewatering can be problematic for beneficial end users.
- Some markets have uncertain futures flue gas desulfurization.
- Algal toxin impacts to land application.

Characteristics of WTRs will Determine Markets

- Characterize your residuals prior to developing beneficial use
 options
- Collect data on residuals for permitting and end user information
 - Calcium (CaO, CaCO3, Calcium Carbonate Equivalence) liming value
 - Solids, sieve analysis
 - Effective Neutralizing Power (ENP)
 - Metals (permit requirements)
 - Possibly microcystin (if in source water) method still uncertain
 - Nutrient analysis

Beneficial Use (Coagulant) Opportunities in Ohio

- Cleveland currently discharge to NEORSD at three of their plants. Considering dewatering, beneficial use at all four plants.
- Akron soil blending.
- Columbus considering beneficial use alternatives for all three plants (alum and lime).
- Avon Lake dewater combined biosolids/alum residuals. Currently landfill, considering beneficial use.

Beneficial Use Options To Consider

Market	Lime-Only WTR	Alum-Only WTR	Alum/Lime Blend
Agriculture (Phosphorus-binding / Integration into biosolids)		x	X
Agriculture (Liming Value)	х		Х
Cement Manufacturing	X		
Disturbed Land Reclamation	X		X
Flue Gas Desulfurization	X		
Industrial Waste Scrubbing	X	X	
Landfill Daily Cover		X	X
Soil Blending		X	X

Considerations for Dewatering/Thickening

- Beneficial use options will likely require dewatering/thickening
- Dewatering significantly impacts
 trucking costs
- Understand how product will be applied (if land app).
- Mechanical vs nonmechanical
- Dewatering WTRs with biosolids
 - Need to understand performance when comingled prior to dewatering
 - Charge differences and polymer selection
 - Bench-scale testing and manufacturer input

Non-Mechanical Dewatering Processes

Freeze-Thaw Beds or Drying Beds

Lagoons

Mechanical Dewatering Processes

Lessons Learned

Beneficial Use Lessons Learned

- Diversify the beneficial use portfolio similar to biosolids market
- Separate lime and coagulant for more beneficial use options
- Discuss coordination opportunities between biosolids and WTR beneficial use markets
- Understand all of the potential waste streams from water plants and impacts on WWTP ops.
- Compare costs, including environmental impact, using life cycle assessment. Understand the true costs of the residuals management options before making a decision.
- Fully evaluate liquid and solids processing impacts (some good / some bad) at WRRF

Bret Casey, P.E. bcasey@hazenandsawyer.com

